• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral definida

integral definida

Mensagempor ilane » Ter Abr 08, 2014 15:00

calcule
\int_{0}^{1} (\int_{2}^{3} t^4 sen xdt) dx

fazendo eu achei a seguinte resposta, mais não tenho certeza da resposta, uma integral indefinida mas com uma constante masnão tenho certeza da resposta p, poderia me ajuadar
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral definida

Mensagempor Russman » Ter Abr 08, 2014 23:33

Pelo q eu entendi você quer fazer uma integral do tipo

I=\int_{0}^{1} \int_{2}^{3} t^4 \sin (x) \quad dtdx.

Se as variáveis x e t são independentes, você pode tomar \sin(x) como constante frente ao processo de integração na variável t.

I=\int_{0}^{1} \int_{2}^{3} t^4 \sin x \quad dtdx = \int_{0}^{1}\sin(x)dx \int_{2}^{3} t^4dt = \left [ -\cos(x) \right ]_{0}^{1}. \left [ \frac{1}{5}t^5 \right ]_{2}^{3} = (-\cos(1)+1).\frac{1}{5}(3^5-2^5)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?