• Anúncio Global
    Respostas
    Exibições
    Última mensagem

subespaço gerado

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

subespaço gerado

Mensagempor Cicero ferreira » Sex Mar 14, 2014 18:23

Determinar o valor de \lambda para que o vetor u = \left[ \begin{array}{ccc} \lambda\\ 1,1\\3\\ \end{array} \right] pertença ao subespaço gerado pelos vetores
v = \left[ \begin{array}{ccc} 1\\ 1\\1\\ \end{array} \right]

w = \left[ \begin{array}{ccc} 1\\ 0\\2\\ \end{array} \right].
Cicero ferreira
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Mar 04, 2014 13:47
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: subespaço gerado

Mensagempor Russman » Sex Mar 14, 2014 23:00

O subespaço gerado pelos vetores v,w, seja ele E, é tal que se um vetor u pertence a E então u é escrito como combinação linear de v e w. Ou seja,

S(u,v)=E
u \in E \Rightarrow E=\left \{ u \ ; u= \alpha_1v + \alpha_2w, \quad \alpha_1,  \alpha_2 \in \mathbb{R}  \right \}

Assim, temos

\begin{bmatrix}
\lambda \\ 
1,1\\ 
3
\end{bmatrix}= \alpha_1 \begin{bmatrix}
1 \\ 
1\\ 
1
\end{bmatrix}+\alpha_2\begin{bmatrix}
1 \\ 
0\\ 
2
\end{bmatrix}

Ou,

\left\{\begin{matrix}
\lambda = \alpha_1 + \alpha_2 \\ 
 1,1= \alpha_1 \\ 
 3= \alpha_1+2\alpha_2
\end{matrix}\right.

Agora resolva o sistema, isto é, calcule os valores dos alphas ( na verdade só de alpha_2, pois alpha_1 já está especificado o valor), some-os e terá o valor de lambda.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59