• Anúncio Global
    Respostas
    Exibições
    Última mensagem

subespaço gerado

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

subespaço gerado

Mensagempor Cicero ferreira » Sex Mar 14, 2014 18:23

Determinar o valor de \lambda para que o vetor u = \left[ \begin{array}{ccc} \lambda\\ 1,1\\3\\ \end{array} \right] pertença ao subespaço gerado pelos vetores
v = \left[ \begin{array}{ccc} 1\\ 1\\1\\ \end{array} \right]

w = \left[ \begin{array}{ccc} 1\\ 0\\2\\ \end{array} \right].
Cicero ferreira
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Mar 04, 2014 13:47
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: subespaço gerado

Mensagempor Russman » Sex Mar 14, 2014 23:00

O subespaço gerado pelos vetores v,w, seja ele E, é tal que se um vetor u pertence a E então u é escrito como combinação linear de v e w. Ou seja,

S(u,v)=E
u \in E \Rightarrow E=\left \{ u \ ; u= \alpha_1v + \alpha_2w, \quad \alpha_1,  \alpha_2 \in \mathbb{R}  \right \}

Assim, temos

\begin{bmatrix}
\lambda \\ 
1,1\\ 
3
\end{bmatrix}= \alpha_1 \begin{bmatrix}
1 \\ 
1\\ 
1
\end{bmatrix}+\alpha_2\begin{bmatrix}
1 \\ 
0\\ 
2
\end{bmatrix}

Ou,

\left\{\begin{matrix}
\lambda = \alpha_1 + \alpha_2 \\ 
 1,1= \alpha_1 \\ 
 3= \alpha_1+2\alpha_2
\end{matrix}\right.

Agora resolva o sistema, isto é, calcule os valores dos alphas ( na verdade só de alpha_2, pois alpha_1 já está especificado o valor), some-os e terá o valor de lambda.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.