• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITE

LIMITE

Mensagempor Ana Maria da Silva » Qua Fev 26, 2014 20:22

PODERIA ME AJUDAREM COM A SOLUÇÃO DESTES 2 LIMITES?

Calcule os limites: \lim_{(X,Y)\rightarrow(0,0)}\frac{XY}{\sqrt{{X}^{2}+{Y}^{2}}} E \lim_{(X,Y)\rightarrow(0,0)}\frac{1-COS\sqrt{XY}}{X}}
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: LIMITE

Mensagempor young_jedi » Sex Fev 28, 2014 23:55

a primeira por uma mudança de variaveis

x=rsen(\theta)

y=r.cos(\theta)

\lim_{r\to0}\frac{r.sen(\theta)r.cos(\theta)}{\sqrt{r^2.sen^2(\theta)+r^2.cos^2(\theta)}}

\lim_{r\to0}r.sen(\theta)cos(\theta)

como -1<sen(\theta).cos(\theta)<1 para qualquer angulo

então

\lim_{r\to0}r.sen(\theta)cos(\theta)=0

para a segunda

\lim_{(x,y)\to(0,0)}\frac{1-cos\sqrt{xy}}{x}

\lim_{(x,y)\to(0,0)}\frac{1-cos\sqrt{xy}}{x}.\frac{1+cos\sqrt{xy}}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{1-cos^2\sqrt{xy}}{x.(1+cos\sqrt{xy})}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{x.(1+cos\sqrt{xy})}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{xy}\frac{y}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{\sqrt{xy}^2}\frac{y}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{sen\sqrt{xy}}{\sqrt{xy}}.\frac{sen\sqrt{xy}}{\sqrt{xy}}\frac{y}{1+cos\sqrt{xy}}=1.1.\frac{0}{1+1}=0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.