• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Integral Indefinida

Duvida Integral Indefinida

Mensagempor cardoed001 » Sáb Fev 22, 2014 16:55

Boa tarde a todos,

Alguém poderia me ajudar a resolver a seguinte integral:

\int_{}^{} 1/(1+sen x) dx

O exercicio pede para multiplicar por uma expressão apropriada o numerador e o denominador e eu não consegui descobrir uma que ajudasse a resolver...

Desde ja grato pela ajuda.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Duvida Integral Indefinida

Mensagempor Man Utd » Sáb Fev 22, 2014 18:42

Olá :D


Tbm não conseguir encontrar essa expressão para ajudar na integração, mas resolvi usando o msm método deste Tópico.


Então sabendo que : senx=\frac{2tg \left(\frac{x}{2} \right)}{1+tg^{2} \left(\frac{x}{2} \right)} , então substituia na integral:

\int \; \frac{1}{1+\frac{2tg \left(\frac{x}{2} \right)}{1+tg^{2} \left(\frac{x}{2} \right)}} \; dx


\int \; \frac{1}{\frac{1+tg^{2} \left(\frac{x}{2} \right)+2tg \left(\frac{x}{2} \right)}{1+tg^{2} \left(\frac{x}{2} \right)}} \; dx


\int \; \frac{1+tg^{2} \left(\frac{x}{2} \right)}{1+tg^{2} \left(\frac{x}{2} \right)+2tg \left(\frac{x}{2} \right)} \; dx


u=tg^{2} \left( \frac{x}{2} \right) \;\; \rightarrow \;\; du=\frac{1}{2}*sec^{2}  \left( \frac{x}{2} \right) \; dx  \;\; \Leftrightarrow \;\; du=\frac{1}{2}* \left(1+tg^{2} \left( \frac{x}{2} \right) \right) \; dx

ficando com:


2*\int \; \frac{1}{u^2+2u+1}\; du

é só concluir usando frações parciais...
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Duvida Integral Indefinida

Mensagempor cardoed001 » Sáb Fev 22, 2014 23:09

Muito obrigado mesmo...

Quebrou um galhão...
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Duvida Integral Indefinida

Mensagempor young_jedi » Dom Fev 23, 2014 11:15

Olá amigos, uma outro maneira que pensei foi multiplicar e dividir a expressão por 1-sen(x)

\int\frac{1}{1+sen(x)}dx

\int\frac{1}{1+sen(x)}.\frac{1-sen(x)}{1-sen(x)}dx

\int\frac{1-sen(x)}{1-sen^2(x)}dx

\int\frac{1-sen(x)}{cos^2(x)}dx

\int\frac{1}{cos^2(x)}dx-\int\frac{sen(x)}{cos^2(x)}dx

=tg(x)-\frac{1}{cos(x)}

valeu ai galera até mais.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Duvida Integral Indefinida

Mensagempor cardoed001 » Dom Fev 23, 2014 11:26

Caraca...

Essa eh a resposta do livro mesmo...

Valeu... Muito obrigado mesmo.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Duvida Integral Indefinida

Mensagempor Man Utd » Dom Fev 23, 2014 11:51

é bem mais fácil multiplicar 1-sen(x) msm.



vlw. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}