• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida desenvolvimento cálculo

Dúvida desenvolvimento cálculo

Mensagempor brunnkpol » Sáb Fev 15, 2014 22:16

Não tenho a mínima noção de cálculo, mas pelo que eu vi acho que pra essa equação é necessário. Como posso resolver {x}^{2}=cos x
brunnkpol
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Mai 07, 2013 16:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida desenvolvimento cálculo

Mensagempor e8group » Dom Fev 16, 2014 22:04

Acho que tecnicas de análise numérica ajudará você .

Já tentou o método de Newton ? Pesquisando este exercício , encontrei a seguinte solução proposta que emprega M.Newton

http://answers.yahoo.com/question/index ... 542AAFhPRd
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida desenvolvimento cálculo

Mensagempor brunnkpol » Ter Fev 18, 2014 12:19

Obrigado pela sugestão. Usando o método de newton, achei o valor, mas apenas o positivo. O gráfico (pelo programa de computador) mostra que as funções se interceptam no mesmo valor tanto negativo quanto positivo de x. Outra dúvida é se existe algum meio que eu possa descobrir simplesmente em quantos pontos uma função intercepta a outra.
brunnkpol
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Mai 07, 2013 16:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida desenvolvimento cálculo

Mensagempor e8group » Sex Fev 21, 2014 12:31

brunnkpol escreveu:Obrigado pela sugestão. Usando o método de newton, achei o valor, mas apenas o positivo. O gráfico (pelo programa de computador) mostra que as funções se interceptam no mesmo valor tanto negativo quanto positivo de x



Perfeito !Se pelo metodo de Newton encontrasse ,digamos x_o , um valor aproximado para a raiz positiva da eq. dada , ent'ao -x_o eh uma aproximacao para a raiz negativa da eq . Isto ocorre pq a funcao cosseno e a definida por x(ao quadrado) sao pares.

Desculpe estou com problemas no teclado .



brunnkpol escreveu:Outra dúvida é se existe algum meio que eu possa descobrir simplesmente em quantos pontos uma função intercepta a outra.


Nao sei se ha um metodo especifico . Talvez o TVI ajude . Por exemplo , dadas as funcoes f e g reais , defina h = f-g . Se a funcao h e continua em um intervalo da forma [a,b] e h(a)h(b) < 0 entao pelo TVI existe pelo menos um um numero c entre a e b tal que h(c) = 0 .Mas isto nao nos garanti a quantidade de c presente neste intervalo ,podemos entao reduzir o intervalo usando a metodo da bissecao e verificar se a imagem da funcao oscila o sinal no novo subintervalo e assim por diante .

Tambem podemos verificar se a derivada da funcao eh positiva ou negativa no intrevalo [a,b] , se isto ocorrer juntamente com h(a)h(b) < 0, entao a funcao h possui apenas uma raiz neste intervalo .

Nao sei se estou abilitado para ajudar , mencionei um pouco sobre analise numerica , mas ainda nao estudei tal .Talvez outro membro possa contribuir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.