• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor engenheiroemduvida » Qua Fev 19, 2014 21:38

UM VETOR W DO R3 (ESPAÇO) FORMA COM OS EIXOS AX E AY,ÂNGULOS DE 60º E 120º RESPECTIVAMENTE,DETERMINE W(VETOR) PARA QUE ELE TENHA MODULO IGUAL A 2 *-) *-)

AJUDA!
engenheiroemduvida
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 19, 2014 21:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor Russman » Qui Fev 20, 2014 22:27

Todo vetor w \in \mathbbm{R}^3 pode ser escrito como

\overrightarrow{w} =  w ( \cos( \alpha_x)\widehat{i}   + \cos( \alpha_y) \widehat{j}   +\cos( \alpha_z) \widehat{k}  )

onde os "alphas" são os ângulos que cada componente forma com o respectivos eixos e w é o módulo do vetor.

Com os ângulos dados escrevemos então

\overrightarrow{w} =  w ( \frac{1}{2} \widehat{i}   - \frac{1}{2} \widehat{j}   + \cos(\alpha_z) \widehat{k}  )

Lembre-se que \overrightarrow{w} \cdot \overrightarrow{w} = w^2. Assim,

\frac{1}{4} + \frac{1}{4} + \cos^2(\alpha_z) = 1 \Rightarrow \cos^2(\alpha_z) = \frac{1}{2} \Rightarrow \cos(\alpha_z) = \pm \frac{1}{\sqrt{2}}

Se o módulo do mesmo tem de ser 2, então w=2 e , portanto,

\overrightarrow{w} =  \widehat{i}   -  \widehat{j}   \pm \sqrt{2}  \widehat{k}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59