por Gustavo Gomes » Sex Jan 31, 2014 21:50
Olá, Pessoal!
Na figura a seguir, o triângulo equilátero ABC e o pentágono regular ADEFG possuem lados de mesmo comprimento e estão em posição tal que as retas BC e GF são paralelas.
Quanto mede o ângulo ACD?

- imagem.PNG (4.4 KiB) Exibido 2976 vezes
A resposta é 78º.
Considerei a medida dos ângulos internos do pentágono regular e do Triângulo equilátero; tentei prolongar os segmentos AC e GF e trabalhar com ângulos complementares e opostos pelo vértice, mas não consegui chegar no resultado.
Aguardo, grato.
-
Gustavo Gomes
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Out 05, 2012 22:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática-Licenciatura
- Andamento: formado
por young_jedi » Ter Fev 18, 2014 12:24

- equilateros.png (5.38 KiB) Exibido 2932 vezes
como as retas são paralelas então podemos traçar uma reta perpendicular com angulo de 90º com ambas
como o angulo do triangulo é 60º então ao angulo entre as retas GC e CA é 30º
então pela soma dos angulos internos do quadrilatero temos


como o trianulo ACD é isoceles pois possui dois lados inguais então


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida - Medida do ângulo
por flaviano » Dom Nov 07, 2010 12:30
- 6 Respostas
- 4402 Exibições
- Última mensagem por Jefferson

Dom Nov 28, 2010 23:22
Geometria Plana
-
- Determine a medida do ângulo
por andersontricordiano » Ter Jun 07, 2011 14:19
- 1 Respostas
- 2380 Exibições
- Última mensagem por Molina

Seg Jun 13, 2011 02:08
Geometria
-
- Expressar medida do ângulo em radianos e graus?
por FilipiM » Dom Mar 09, 2014 16:54
- 1 Respostas
- 2261 Exibições
- Última mensagem por Russman

Dom Mar 09, 2014 23:57
Trigonometria
-
- Calcule a medida do ângulo BNP formado dentro do losango
por andersontricordiano » Ter Abr 05, 2011 19:07
- 1 Respostas
- 4616 Exibições
- Última mensagem por Elcioschin

Ter Abr 05, 2011 19:28
Geometria
-
- Sistema de medida - medida de área
por Igra » Qui Abr 11, 2013 09:53
- 2 Respostas
- 4751 Exibições
- Última mensagem por Igra

Sex Abr 12, 2013 19:37
Conversão de Unidades
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.