• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calcular limites] Exercício

[calcular limites] Exercício

Mensagempor fff » Qua Jan 15, 2014 12:51

Boa tarde. Tenho dúvidas neste exercício na alínea b. A solução da alínea b é \lim{h({u}_{n}})=-2 e \lim{h({v}_{n}})=+\infty
Imagem
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [calcular limites] Exercício

Mensagempor Guilherme Pimentel » Sex Jan 17, 2014 05:45

Definindo:
h(x)= \left\{
\begin{array}{cc}
 \left| \frac{1}{x^2-1}\right|-2 & \textrm{, se }\left| x\right|\neq 1 \\
  -1 & \textrm{, se }\left| x\right| =1 \\
\end{array} \right. \\ 

\textrm{teremos assim:}

\[
\begin{align}
   \lim_{x\rightarrow\pm\infty}h(x) &= -2 \\ 
   \lim_{x\rightarrow\pm 1}h(x) &= +\infty \\
   h(1)=h(0)&=h(-1)=-1
\end{align}\]\\

\textrm{agora observe que:}

\begin{align}
   \lim_{n\rightarrow+\infty}u_n=+\infty &\Rightarrow \lim_{n\rightarrow+\infty}h(u_n)=-2 \\ 
   \lim_{n\rightarrow+\infty}v_{2n}&=1 \\ 
   \lim_{n\rightarrow+\infty}v_{2n+1}&=-1 \\
   \textrm{(2) e (3)}&\Rightarrow\lim_{n\rightarrow+\infty}h(v_n)=+\infty
\end{align}


o gráfico fica:
função par01.jpg
Gráfico de h(x)
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [calcular limites] Exercício

Mensagempor fff » Dom Jan 19, 2014 09:00

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59