• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Escoamento de água

Escoamento de água

Mensagempor Cleyson007 » Dom Jan 12, 2014 17:11

Se um tanque tem 5000 galões de água, que escoa pelo fundo em 40 minutos, então a Lei de Torricelli dá o volume V de água que restou no tanque depois de t minutos como V=5000{\left(1-\frac{t}{40} \right)}^{2}\,\,\,\,0\leq\,t\leq\,40

Encontre a taxa segundo a qual a água está escoando do tanque depois de(a) 5 min (b) 10 min (c) 20 min e (d) 40 min. Em que instante o escoamento é mais rápido? E mais vagaroso? Resuma o que você encontrou.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Escoamento de água

Mensagempor Guilherme Pimentel » Seg Jan 13, 2014 22:43

Para ajudar um pouco:

\\
\frac{dV}{dt}= -\frac{2}{40} \cdot 5000 \cdot \left( 1-\frac{t}{40}\right)=-250 \cdot \left( 1-\frac{t}{40}\right)=-\frac{25}{4} \cdot \left( 40-t \right) \\


\\
\frac{dV}{dt} (5) =-\frac{25 \cdot 35}{4} =-\frac{875}{4}=-218.75
Editado pela última vez por Guilherme Pimentel em Qua Jan 15, 2014 04:51, em um total de 1 vez.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: Escoamento de água

Mensagempor Cleyson007 » Ter Jan 14, 2014 00:36

Olá, boa noite Guilherme!

Amigo, consegui encontrar os valores para 5min, 10min, 20min e 40min. Estou com dúvida nessa parte: "Em que instante o escoamento é mais rápido? E mais vagaroso? Resuma o que você encontrou."

Pode me ajudar?

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Escoamento de água

Mensagempor Guilherme Pimentel » Qua Jan 15, 2014 04:55

Se a pergunta é sobre os tempos nos quais vc calculou a derivada é só comparar os valores obtidos, o de maior valor absoluto é o mais rápido, o de menor valor absoluto é o mais lento.

Se for em relação a todos os momentos possíveis, a resposta é mais rápido em t=0 mais lento em t=40.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.