por Pessoa Estranha » Qui Jan 09, 2014 15:37
Olá, pessoal! Não estou conseguindo resolver o seguinte exercício:
Obtenha o simétrico do ponto P em relação ao plano:
P=(1,4,2); ?:x-y+z-2=0
Por favor, pode ser só uma dica. Já tentei resolver várias vezes, mas não consigo.
Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por anderson_wallace » Qui Jan 09, 2014 23:56
Inicialmente vamos lembrar da definição de equação geral do plano.
Seja

um ponto do plano

e

um vetor ortogonal a

, a equação geral do plano

é definida como

, onde

Então note que com a equação geral vc tem um vetor ortogonal ao plano, que nesse caso é

Agora podemos encontrar uma reta ortogonal a

que passa pelo ponto

, e como o ponto simétrico a P está contido nessa reta, ele pode ser escrito como

(Verifique!).
Perceba que basta vc encontrar o valor para

tal que a distância do ponto P ao plano

seja igual a distância do ponto P1 ao plano

.
-
anderson_wallace
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Seg Dez 30, 2013 17:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciência e Tecnologia
- Andamento: cursando
por Pessoa Estranha » Sex Jan 10, 2014 16:08
Olá! Obrigada por responder!
Bem, pensei assim também, mas fiquei na dúvida, pois como podemos garantir que o ponto P está na reta ortogonal ao plano? (não sei se estou dizendo um absurdo, mas podemos imaginar um plano "atravessado" por uma reta ortogonal e que não passa por P, não é?).
Desculpe, estou precisando estudar mais este conteúdo, mas foi o que pensei....
Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por anderson_wallace » Sex Jan 10, 2014 16:45
Seu raciocínio faz todo sentido, afinal existem infinitas retas ortogonais ao plano

. Mas note o modo como essa reta em particular foi obtida. Inicialmente tomamos um vetor ortogonal ao plano que foi dado pela própria equação geral do plano

, daí encontramos a reta ortogonal a

que tem como vetor diretor o vetor

, e que
passa pelo ponto P
Ou seja, na própria obtenção da reta definimos que ela passa pelo ponto P.
-
anderson_wallace
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Seg Dez 30, 2013 17:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciência e Tecnologia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analitica] Urgente!
por mih123 » Qua Mar 27, 2013 10:16
- 1 Respostas
- 1437 Exibições
- Última mensagem por timoteo

Qua Mar 27, 2013 18:03
Geometria Analítica
-
- [Geometria Analítica] Retas perpendiculares - Urgente!
por Pessoa Estranha » Qua Jan 08, 2014 18:16
- 5 Respostas
- 2626 Exibições
- Última mensagem por Pessoa Estranha

Qui Jan 09, 2014 09:37
Geometria Analítica
-
- exercicio geometria analitica
por llucasws » Seg Ago 16, 2010 17:31
- 1 Respostas
- 5172 Exibições
- Última mensagem por alexandre32100

Ter Ago 17, 2010 01:05
Geometria Analítica
-
- Exercício Geometria Analítica
por GuiFerronato » Qua Nov 19, 2014 17:28
- 1 Respostas
- 1497 Exibições
- Última mensagem por adauto martins

Qui Nov 20, 2014 10:46
Geometria Analítica
-
- [geometria analitica] EXERCÍCIO DE VETOR
por luiz_henriquear » Ter Out 25, 2011 20:07
- 1 Respostas
- 2178 Exibições
- Última mensagem por MarceloFantini

Qua Out 26, 2011 15:14
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.