• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação com somatório de potência

equação com somatório de potência

Mensagempor dummyman » Sáb Jan 04, 2014 12:28

Oi pessoal, esse eh meu primeiro post aqui no fórum.

Tenho a seguinte equação:
N+1=1+b+(b^2)+...+(b^d)
Sei que N vale 52 e d vale 5.
Gostaria de saber como proceder para encontrar o valor de b.

Fico muito grato a quem puder ajudar.
dummyman
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jan 04, 2014 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: formado

Re: equação com somatório de potência

Mensagempor e8group » Sáb Jan 04, 2014 15:26

Note que a soma ao lado direito da igualdade é a soma dos d primeiros termos da sequência (neste caso P.G de razão b) 1,b^2 ,b^3 , \hdots . A sequência \left(a r^{n-1} \right)_{n \in \mathbb{N}} és uma P.G. de razão r e a soma dos primeiros m termos é dada por

S_m = \sum_{n=1}^{m+1} ar^{n-1} e assim rS_m = \sum_{n=1}^{m+1} ar^{n} = a - a +ar^{m+1} + \sum_{n=1}^{m} ar^{n} =  -a +ar^{m+1} + \sum_{n=1}^{m+1} ar^{n-1} = -a +ar^{m+1} +S_m . Ou seja,

S_m(r-1) =  -a +ar^{m+1} e portanto \boxed{S_m =  \frac{a(r^{m+1} -1)}{r-1}} desde que r \neq 1 . Pela fórmula destacada ,temos

N + 1 = 53 = \frac{b^{6} -1}{b-1} . O número b corresponde a uma solução real da eq.

x^6 -53x +52 = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: equação com somatório de potência

Mensagempor Russman » Seg Jan 06, 2014 01:24

Também a própria fórmula já é uma equação donde se é capaz de calcular o(s) valor(es) de b.

Veja que

52+1=1+b+b^2+b^3+b^4+b^5

reduz -se a

b^5 + b^4 + b^3 + b^2 + b - 52 = 0

que é uma equação polinomial de grau 5.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.