• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aritmética] Combinatória

[Aritmética] Combinatória

Mensagempor Pessoa Estranha » Dom Dez 08, 2013 15:43

Olá !

Gostaria de ajuda para entender o enunciado do exercício. O problema não é como resolver e sim a interpretação

"Em um torneio de dois turnos do qual participam seis times, quantos jogos são disputados ?"

:oops:

Pensei assim: no primeiro turno, podemos ter três jogos, pois para cada jogo dois times são requisitados (o que resulta em 30 possíveis jogos dos quais apenas três ocorrem); no segundo turno, pensei em três jogos também, pois talvez fossem desclassificados os que perderam no primeiro turno e então três dos times disputariam no segundo.... Bom, eu sei lá ! Só sei que estou fazendo uma confusão ! Quando aparecem exercícios assim, como interpretar ? (pois, parece que falta informação para mim).

Obrigada !
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Combinatória

Mensagempor BrunoLima » Dom Dez 15, 2013 20:54

como são 2 turnos acredito que os times jogam entre si duas vezes, como no campeonato brasileiro. como são 6 time acredito que você deve fazer a combinação de (6,2), estude um pouco sobre combinação.
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: [Aritmética] Combinatória

Mensagempor Pessoa Estranha » Dom Dez 15, 2013 21:03

Está certo, vou considerar, então, que os times jogam entre si duas vezes. Eu deveria saber disso ? Você acha que está claro no contexto ?
Obrigada !
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Combinatória

Mensagempor BrunoLima » Dom Dez 15, 2013 21:31

Realmente não está perfeitamente claro, é o que eu faria, você fez como eu sugeri, encontrou a resposta correta?
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: [Aritmética] Combinatória

Mensagempor Pessoa Estranha » Dom Dez 15, 2013 22:12

A resposta certa é 30.

Do modo como sugeriu, temos, no primeiro turno, 15 possíveis jogos (6.5/2.1) e, no segundo turno, também. Logo, temos 30 jogos possíveis para esse torneio.

Muito Obrigada !
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59