• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda em integral impropria

ajuda em integral impropria

Mensagempor vanu » Dom Dez 15, 2013 15:20

calcular o comprimento do arco dado por x=1/2. y³(ao cubo)+1/6y³(ao cubo)-1 sendo que 1<=Y<=3
eu sei que tenho derivar o f'(x) que fica: 3/2.y² -1/6y²
agora utilizando a forma http://upload.wikimedia.org/math/e/1/d/ ... 9ad941.png
que nao sei fazer a integral alguem pode me ajudar
RESULTADO FINAL E 118/9
vanu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Dez 11, 2013 14:44
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: ajuda em integral impropria

Mensagempor Russman » Dom Dez 15, 2013 15:37

A função é

x(y) = \frac{y^3}{2} + \frac{1}{6y^3} -1

?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.