• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Operação Binária] Dúvida

[Operação Binária] Dúvida

Mensagempor silviopuc » Qui Dez 12, 2013 22:12

Boa noite,

Esse exercício eu não soube nem iniciar.

Se A é um conjunto não vazio então uma operação binária em A é uma função f: A X A \rightarrow A. Qual é o número de operações binárias em um conjunto A com p elementos?

a) {p}^{2}
b) {p}^{3}
c) {p}^{p}^{2}
d) {p}^{2}^{p}
e) {2}^{p}^{2}

Gabarito: C
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Operação Binária] Dúvida

Mensagempor e8group » Sex Dez 13, 2013 00:01

Não tenho certeza se estar correto ,mas obtive como resposta p^3 ,de qualquer forma vou postar o que pensei .

Defina f_i: A^2 \mapsto  A tal que para cada par ordenado em (x,y) \in A^2 fixado, tem-sef_i(x,y) = x_i \in A .Como \sharp A^2 = \sharp A \cdot \sharp A = p \cdot p =p^2 e para cada par ordenado (x,y) é possível definir p operações binárias em A ,então ao todo é possível definir \sum_{i=1}^{p^2} p = p^3 operações binárias em A .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Operação Binária] Dúvida

Mensagempor e8group » Qua Dez 18, 2013 22:45

Está errado . Sejam X ,Y conjuntos com respectivas cardinalidades m,p . Defina f_i : X \mapsto Y e mostremos que há p^m aplicações do conjunto X ao Y .

Suponha X =\{x_1,x_2,\hdots , x_m\} e Y =\{y_1,y_2,\hdots , y_p\} .

Veja o esquema a figura abaixo :

m segmentos de retas verticais com as possíveis imagens pela aplicação :

pic.png


Parti y_1 (L_1) e chegar em y_2 (em L_2) significar que é possível definir uma aplicação tal que x_1 é levado a imagem y_1 e x_2 é levado a imagem y_2 . Uma aplicação ficará bem determinada quando escolhemos um caminho que nos conecta de um ponto de L_{i} ao outro de L_{i+1} (i=1,... p-1) .


Objetivo migar de L_i e L_{i+1} ao longo de L_1,...,L_m : L_1 \rightarrow L_2 \rightarrow \hdots \rightarrow L_m



Partindo de L_1p formas de chegar em L_2 pelo que também há p maneiras de chegar em L_3 ,..., e o mesmo para chegar em L_m de L_{m-1} . Por estes esquema há m \cdot m \cdot m \cdots m = m^p (p-vezes) de executar L_1 \rightarrow L_2 \rightarrow \hdots \rightarrow L_m e portanto há p^m aplicações do conjunto X ao Y .

Daí em particular para Y =A e X = A \times A = A^2 teremos p^{p^2} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?