por fabriel » Qua Dez 11, 2013 16:40
E ai pessoal, tudo trankuilo?
Então to estudando Equações diferenciais e não entendi uma passagem aqui, estou estudando a parte de variáveis separáveis.
Vejam só.
Notemos que equações do tipo:

(1.1)
Onde a e b são constantes, não são equações de variáveis separáveis, mas podem ser reduzidas a elas por meio da seguinte substituição:

(1.2)
Substituindo em (1.1) temos:

NÃO ENTENDI, o porque de concluir que

.
Eu agradeceria se alguém pudesse me ajudar.
Obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Qua Dez 11, 2013 17:24
fabriel escreveu:E ai pessoal, tudo trankuilo?
Então to estudando Equações diferenciais e não entendi uma passagem aqui, estou estudando a parte de variáveis separáveis.
Vejam só.
Notemos que equações do tipo:

(1.1)
Onde a e b são constantes, não são equações de variáveis separáveis, mas podem ser reduzidas a elas por meio da seguinte substituição:

(1.2)
Substituindo em (1.1) temos:

NÃO ENTENDI, o porque de concluir que

.
Eu agradeceria se alguém pudesse me ajudar.
Obrigado
A resposta para sua dúvida seria bem simples , pelo fato da substituição de variável feita . Não se é isso que você está com dúvida .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Qua Dez 11, 2013 18:48
Sim, mas como que disso:

posso afirmar que é igual a isso

.
ou seja,

Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Qua Dez 11, 2013 18:59
Sim . Segundo a mudança de variável

,teremos que

. Mas , derivando-se

com respeito a

,vamos obter

e assim

.
Bom não fiz nada de mais além da solução a qual você postou . Comente qualquer dúvida .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Qua Dez 11, 2013 19:14
Tranquilo, estou me preucupando muito com Analise Matemática e estruturas algebricas... Tenso.. entendi, obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [EQUAÇÃO DIFERENCIAL] Forma separavel
por fabriel » Sáb Nov 02, 2013 12:40
- 1 Respostas
- 1973 Exibições
- Última mensagem por e8group

Sáb Nov 02, 2013 19:09
Cálculo: Limites, Derivadas e Integrais
-
- forma da equação
por Ana Maria da Silva » Sex Mar 08, 2019 09:31
- 0 Respostas
- 3295 Exibições
- Última mensagem por Ana Maria da Silva

Sex Mar 08, 2019 09:31
Equações
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 12215 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
-
- Equaçao diferencial
por romulo39 » Dom Abr 03, 2011 20:58
- 1 Respostas
- 3943 Exibições
- Última mensagem por LuizAquino

Seg Abr 04, 2011 14:39
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial
por jacquelline » Qui Mai 17, 2012 11:04
- 2 Respostas
- 2075 Exibições
- Última mensagem por jacquelline

Sáb Mai 19, 2012 20:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.