• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão UERJ

Questão UERJ

Mensagempor phmarssal » Qua Nov 20, 2013 14:34

Olá gostaria de tirar uma dúvida,vou postara pergunta

Admita dois números inteiros positivos, representados por a e b. Os restos das divisões de a e b por 8 são, respectivamente, 7 e 5.
Determine o resto da divisão do produto a.b por 8.

Eu já vi nesse próprio site como se faz,mas minha duvida ficou na resolução

minha duvida é como montaram essas 2 equações aqui
a = 8.x + 7
b = 8.y + 5

não entendi pq eles pegaram a divisão e multiplicaram para um numero x e somaram com o resto,alguem pode explicar ?
phmarssal
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Nov 20, 2013 14:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão UERJ

Mensagempor e8group » Sáb Nov 23, 2013 10:56

Vou tentar ajudar . Note que pelo elemento neutro aditivo + propriedade associativa da adição ,teremos

a = (a-7) + 7 . Dividindo ambos lado da igualdade por 8 ,

\frac{a}{8} = \frac{a-7}{8} + \frac{7}{8} . Utilizando a hipótese do resto da divisão de a por 8 ser 7 ,segue-se a soma dos restos da divisão de cada número inteiro divididos por 8 à direita da igualdade é igual a 7 . Pelo que 7 dividido por 8 deixa resto 7 ,concluímos que o resto da divisão de a-7 por 8 é 0 o que mostrar que o número \frac{a-7}{8} é inteiro . Pondo

\frac{a-7}{8} = x ,resulta a = 8x + 7 .

Seguindo o mesmo raciocínio podemos obter o segundo resultado b =8y + 5 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão UERJ

Mensagempor Man Utd » Sex Dez 06, 2013 16:55

uma solução alternativa é por congruência linear :

a \equiv 7 mod(8)

b \equiv 5 mod(8)

usando as propriedades de congruência,obtemos:

a*b \equiv 7*5 mod (8)

ab \equiv 35 mod(8)

percebendo que 35 \equiv 3 mod(8), ficaremos com:

ab \equiv 3 mod(8)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Questão UERJ

Mensagempor Russman » Sáb Dez 07, 2013 00:25

Estas operações se valendo de congruência linear formalizam o seguinte raciocínio.

Como explicado, se o número a dividido por 8 da resto 7 então o mesmo deve ser da forma a=8x+7 para x inteiro! Da mesma forma temos b=8y+5 com y também inteiro.

Se efetuarmos a multiplicação de a por b obteremos

a.b=(8x+7)(8y+5) = 8(8xy+5x+7y) + 35

Porém, se dividirmos 35 por 8 teremos resto 3. Assim, 35 = 4.8+3 de modo que

a.b = 8(8xy+5x+7y) + 4.8 + 3 = 8(8xy+5x+7y+4) + 3

Como x e y são inteiros o número 8xy+5x+7y+4 é certamente inteiro também. Chamando este número de w, temos

ab=8w+3.

Pronto! O número ab dividido por 8 dá resto 3.

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?