• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações do 3º grau] - Resolução

[Equações do 3º grau] - Resolução

Mensagempor silviopuc » Dom Dez 01, 2013 16:42

Não consegui chegar no gabarito. Alguém poderia ajudar, por favor!

Se \alpha, \beta  e  \gamma são raízes da equação 2{x}^{3}+3{x}^{2}+2x+4=0, então \left(\alpha+\beta \right)\left(\alpha+\gamma \right)\left(\beta+\gamma \right) é igual a:
a) \frac{1}{2}
b) -\frac{1}{2}
c) \frac{1}{4}
d)-\frac{1}{4}
e) 1

Gabarito: A
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equações do 3º grau] - Resolução

Mensagempor e8group » Dom Dez 01, 2013 18:43

Só por simplicidade vamos trocar alpha ,beta ,gamma respect. por a,b,c .

Expandindo (a+b)(a+c)(b+c) teremos

a^2 b+a b^2+a^2 c+2 a b c+b^2 c+a c^2+b c^2(1) (muito obrigado Wolfram alpha ! ) ,agorá é só "brincar" com os a,b,c de modo a usar as Relações de Girard que estabelece uma relação entre as raízes de um polinômio e os seus coeficientes . De acordo com estas relações ,dada equação polinomial \delta x^3 + \gamma x^2 + \epsilon x + \lambda = 0  ,\delta \neq 0 cuja raízes reais são a,b,c ,temos os resultados : \begin{cases}  a+b+c = - \frac{\gamma}{\delta } \\  ab + ac + bc = \frac{\epsilon}{ \delta } \\ abc = - \frac{\lambda}{\delta} \end{cases} .

Seja Q = a^2 b+a b^2+a^2 c+2 a b c+b^2 c+a c^2+b c^2 , segue


Q = [a(ab) +  a(ac) +  a(bc) ] + [b(ab) +  b(bc) ] + [c(ab)  + c(ac) + c(cb)] e add abc nos dois lados da igualdade

Q +abc =  [a(ab) +  a(ac) +  a(bc) ] + [b(ab) + b(ac)+  b(bc)   ] + [c(ab)  + c(ac) + c(cb)] e assim obtemos

Q + abc = (a+b+c)(ab+ ac + bc) e portanto

Q = (a+b+c)(ab+ ac + bc) - abc

Se não errei contas é isso . Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Equações do 3º grau] - Resolução

Mensagempor silviopuc » Ter Dez 03, 2013 00:06

Muito obrigado!

santhiago escreveu:Só por simplicidade vamos trocar alpha ,beta ,gamma respect. por a,b,c .

Expandindo (a+b)(a+c)(b+c) teremos

a^2 b+a b^2+a^2 c+2 a b c+b^2 c+a c^2+b c^2(1) (muito obrigado Wolfram alpha ! ) ,agorá é só "brincar" com os a,b,c de modo a usar as Relações de Girard que estabelece uma relação entre as raízes de um polinômio e os seus coeficientes . De acordo com estas relações ,dada equação polinomial \delta x^3 + \gamma x^2 + \epsilon x + \lambda = 0  ,\delta \neq 0 cuja raízes reais são a,b,c ,temos os resultados : \begin{cases}  a+b+c = - \frac{\gamma}{\delta } \\  ab + ac + bc = \frac{\epsilon}{ \delta } \\ abc = - \frac{\lambda}{\delta} \end{cases} .

Seja Q = a^2 b+a b^2+a^2 c+2 a b c+b^2 c+a c^2+b c^2 , segue


Q = [a(ab) +  a(ac) +  a(bc) ] + [b(ab) +  b(bc) ] + [c(ab)  + c(ac) + c(cb)] e add abc nos dois lados da igualdade

Q +abc =  [a(ab) +  a(ac) +  a(bc) ] + [b(ab) + b(ac)+  b(bc)   ] + [c(ab)  + c(ac) + c(cb)] e assim obtemos

Q + abc = (a+b+c)(ab+ ac + bc) e portanto

Q = (a+b+c)(ab+ ac + bc) - abc

Se não errei contas é isso . Tente concluir .
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}