• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração de Conjuntos

Demonstração de Conjuntos

Mensagempor Ovelha » Qua Nov 27, 2013 12:35

A questão manda mostra os seguintes conjuntos, estou pedindo a ajuda de vocêspasrs conferir e ajudar

a) Se A \subset B e A \subset C então A \subset B \cap C.
Seja x \epsilon B \cap C
x \epsilon A, com A \subset B, então x \epsilonA com A \subset C,logo x \epsilon B \cap C.
Por favor verifique se está correto tenho uma prova amanhã e quero entender realemnte como faz . Obrigado
Deus abençoe a todos os colaboradores do site
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Demonstração de Conjuntos

Mensagempor e8group » Qua Nov 27, 2013 14:20

Na minha opinião você errou somente na parte " seja x \in B \cap C " ,você quer mostra que quaisquer que seja x em A implica x em B\cap C .

Poderia iniciar assim : seja x \in A , em seguida utilizando a hipótese (dada) A \subset B,C ,teríamos x \in B e x\in C que pela definição de interseção resulta x \in B\cap C e como x é arbitrário (não levantamos nenhuma hipótese sobre o elemento x ) , pode concluir que quaisquer que seja x em A implica B\cap C ,i.e , A\subset B\cap C .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Demonstração de Conjuntos

Mensagempor Ovelha » Qua Nov 27, 2013 16:05

Obrigado
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}