• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral de fração racional] Deduza uma formiula para:

[Integral de fração racional] Deduza uma formiula para:

Mensagempor Job1992 » Ter Nov 26, 2013 22:29

Deduza uma formula para integral f(x)=\int_ \frac{Ax+B}{(x^2+bx+c)^n}dx, com b^2-4c<0

Obs: Isso vai chegar em uma formula de recorrencia.
Job1992
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Nov 26, 2013 22:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral de fração racional] Deduza uma formiula para:

Mensagempor e8group » Sáb Nov 30, 2013 21:27

Vamos trabalhar no denominador ,

q(x) := ax^2+bx+ c = a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a} = a(x + \frac{b}{2a})^2  + \frac{4ac-b^2}{4ac} (1) . Dividimos q(x) por a :

\frac{q(x)}{a} = (x + \frac{b}{2a})^2  + \frac{4ac-b^2}{4a^2c} . (2)

Agora para simplificar as notações definamos e = \frac{b}{2a} e g = \frac{4ac-b^2}{4a^2c} (3) . Assim ,temos

\frac{q(x)}{a} = (x + e)^2  + g (4) e dividindo-se ambos lados por g ,

\frac{q(x)}{ag} = \left(\frac{x+e}{\sqrt{g}}\right)^2 + 1(5) ou ainda por mudança de variável \frac{x+e}{\sqrt{g}} = t (6) ,

\frac{q(x)}{ag} = t^2 + 1 (7) . Veja o que conseguimos até agora ,

\frac{Ax+B}{(q(x))^n} = \frac{Ax+B}{(ag\dfrac{q(x)}{ag})^n} = \frac{1}{(ag)^n} \left(A \frac{x}{\left( \dfrac{q(x)}{ag}\right )^n}  +   \frac{B}{\left( \dfrac{q(x)}{ag}\right )^n} \right ) (8)


[Unparseable or potentially dangerous latex formula. Error 5 : 791x83] . (9) .

Considere L_1 =\int\frac{x}{\left( \dfrac{q(x)}{ag}\right )^n}dx e L_2 = \int \frac{1}{\left( \dfrac{q(x)}{ag}\right )^n} dx (10) .

A derivada de (6) nos dá \frac{1}{g^{1/2}}dx = dt \implies dx = g^{1/2}  dt e escrevendo x como função de t em (6) , x = g^{1/2} t -e ,utilizando estas relações em (10), segue



L_1 = g \int\frac{g^{1/2} t-e}{\left( t^2+1\right)^n}dt = g^{3/2} \int \frac{t}{(t^2+1)^n} dt - ge \int \frac{1}{(t^2+1)^n} dt . A primeira integral sabemos calcular , qual a resposta ? Já a segunda é mais trabalhosa .

Defina I_n = \int \frac{1}{(t^2+1)^n} .Usando integração por partes podemos obter a fórmula(tente fazer )

I_n = \frac{t}{2(n-1)(t^2+1)^{n-1}} + \frac{2n-3}{2(n-1)} I_{n-1} .

Desta forma L_1 está determinado . e L_2 pode ser determinado pela fórmula de recorrência .

É isso ,espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?