• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função

função

Mensagempor Apotema » Seg Nov 23, 2009 16:02

se sen\alpha=\frac{1}{3}, então o valor de sen(25\pi+\alpha)-sen(88\pi-\alpha):
fiz a equivalência de sen 30°=1/2, mas não cheguei a lugar algum.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: função

Mensagempor thadeu » Seg Nov 23, 2009 18:33

Primeiro, utilize as propriedades:

sen(a+b)=sena\,cosb+senb\,cosa\\sen(a-b)=sena\,cosb-senb\,cosa

sen(25 \pi+ \alpha)=sen25 \pi\,cos \alpha+sen \alpha\,cos 25 \pi

Lembra do exercício passado??? No ciclo trigonométrico 25 \pi=12(2 \pi)+ \pi, ou seja, são 12 voltas completas mais "meia volta" (\pi); logo cos 25 \pi= cos \pi=-1\,\,\,e\,\,\,sen25 \pi=sen \pi=0

Substituindo na 1ª parte da expressão:

sen(25 \pi+ \alpha)=sen \pi\,cos \alpha+sen \alpha\,cos \pi=(0)\,cos \alpha+sen \alpha (-1)=-sen \alpha

Na 2ª parte da expressão temos

sen(88 \pi- \alpha)=sen88 \pi\,cos \alpha-sen \alpha\,cos88 \pi

88 \pi=44(2 \pi), que são 44 voltas completas, logo,sen88 \pi=sen 0=0\,\,\,e\,\,\,cos88 \pi=cos0=1

Substituindo na 2ª parte da expressão:

sen(88 \pi- \alpha)=sen0\,cos \alpha+sen \alpha\,cos0=0+sen \alpha\,(1)=sen \alpha


O resultado de expressão completa é:

sen(25 \pi+ \alpha)-sen(88 \pi- \alpha)=-sen \alpha-sen\alpha=-2\,sen \alpha=-2\,(\frac{1}{3})=-\frac{2}{3}
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: função

Mensagempor Apotema » Ter Nov 24, 2009 07:50

thadeu escreveu:Primeiro, utilize as propriedades:

sen(a+b)=sena\,cosb+senb\,cosa\\sen(a-b)=sena\,cosb-senb\,cosa

sen(25 \pi+ \alpha)=sen25 \pi\,cos \alpha+sen \alpha\,cos 25 \pi

Lembra do exercício passado??? No ciclo trigonométrico 25 \pi=12(2 \pi)+ \pi, ou seja, são 12 voltas completas mais "meia volta" (\pi); logo cos 25 \pi= cos \pi=-1\,\,\,e\,\,\,sen25 \pi=sen \pi=0

Substituindo na 1ª parte da expressão:

sen(25 \pi+ \alpha)=sen \pi\,cos \alpha+sen \alpha\,cos \pi=(0)\,cos \alpha+sen \alpha (-1)=-sen \alpha

Na 2ª parte da expressão temos

sen(88 \pi- \alpha)=sen88 \pi\,cos \alpha-sen \alpha\,cos88 \pi

88 \pi=44(2 \pi), que são 44 voltas completas, logo,sen88 \pi=sen 0=0\,\,\,e\,\,\,cos88 \pi=cos0=1

Substituindo na 2ª parte da expressão:

sen(88 \pi- \alpha)=sen0\,cos \alpha+sen \alpha\,cos0=0+sen \alpha\,(1)=sen \alpha


O resultado de expressão completa é:

sen(25 \pi+ \alpha)-sen(88 \pi- \alpha)=-sen \alpha-sen\alpha=-2\,sen \alpha=-2\,(\frac{1}{3})=-\frac{2}{3}

Obrigadíssima
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59