• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG

PG

Mensagempor sergioh » Qui Nov 07, 2013 20:07

Salve galera,
To com uma dúvida que não to conseguindo resolver, sei lá o que falta...

Olha esse exercicio:

A sucessão (1,a,b,27,c) é uma PG. Calcule a, b e c.

simplismente, não sei!

abraço a todos!
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PG

Mensagempor e8group » Qui Nov 07, 2013 21:39

Lembre-se a_1 , a_2 , a_3, ... é uma sequência geométrica de razão r se

a_2 = r \cdot a_1 , a_3 = a_2 \cdot r  =  a_1 r^2  , ... e assim por diante . Por exemplo , as raízes x_1 = 2 ,x_2 = 4 ,x_3 = 8 do polinômio p(x) = -64+56 x-14 x^2+x^3 é uma sequência geométrica de razão 2 . Pois podemos escrever , x_2 como 2 \cdot 2 = 2 \cdot x_1 e x_3 como 4 \cdot 2 = x_2 \cdot 2 =  2 \cdot 2^2 .

Agora tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PG

Mensagempor sergioh » Sex Nov 08, 2013 19:57

santhiago escreveu:Lembre-se a_1 , a_2 , a_3, ... é uma sequência geométrica de razão r se

a_2 = r \cdot a_1 , a_3 = a_2 \cdot r  =  a_1 r^2  , ... e assim por diante . Por exemplo , as raízes x_1 = 2 ,x_2 = 4 ,x_3 = 8 do polinômio p(x) = -64+56 x-14 x^2+x^3 é uma sequência geométrica de razão 2 . Pois podemos escrever , x_2 como 2 \cdot 2 = 2 \cdot x_1 e x_3 como 4 \cdot 2 = x_2 \cdot 2 =  2 \cdot 2^2 .

Agora tente concluir e comente as dúvidas .


Obrigado santhiago, mas não consegui concluir.
tentei de tudo mas não deu as prespostas: a=3, b=9 e c=81
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PG

Mensagempor e8group » Sex Nov 08, 2013 20:49

Considere a_1 = 1 , a_2 = a,a_3 = b , a_4 = 27 , a_5 =c . A sucessão (a_1,a_2,a_3, a_4,a_5) é uma P.G . então existe um número real r constante tal que \begin{cases} a_2 = r \cdot a_1 \\    a_3 = r^2 \cdot a_1 \\  a_4 = r^3 \cdot a_1 \\     a_5 = r^4 \cdot a_1 \\\end{cases} . Só que a_1 = 1 ,assim encontrando r determinaremos a,b,c . E como sabemos que a_4 = 27 = 3^3 ,temos que pelo resultado acimar^3 = 27=3^3 e portanto r = 3 . Agora tente concluir.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PG

Mensagempor sergioh » Dom Nov 10, 2013 15:13

Agora entendi sua explicação! Ficou fácil!!! Vlw pela ajuda!

Daqui a poco vai ter mais dúvidas!


Vlw!
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}