• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Aritmética] UESB 2011.2

[Progressão Aritmética] UESB 2011.2

Mensagempor Leocondeuba » Ter Nov 05, 2013 22:03

Desculpem-me pelo meu erro, pois eu não sabia da regra sobre as imagens. Por isso, estou postando novamente a questão.
Olá a todos. Por favor, necessito da resolução desta questão, pois eu tentei resolvê-la e não consegui encontrar o raciocínio certo para me conduzir à alternativa correta. Agradeço desde já.

Sabendo-se que (x1, x2, x3) é uma progressão aritmética de razão 2 e que f:R ? R é uma função quadrática, tal que f(x1) = -2, f(x2) = =14 e f(x3) = -34, é correto afirmar que o coeficiente do termo de 2º grau da função f é igual a

01) 2 02) 1 03) 0,5 04) -1 05) -2
Leocondeuba
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mai 11, 2013 19:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Aritmética] UESB 2011.2

Mensagempor e8group » Ter Nov 05, 2013 23:36

Dica :

Qual relação entre x_1, x_2 ,x_3 ? Por hipótese (x_1,x_2,x_3) é uma progressão aritmética de razão 2 , então x_2 = x_1 + 2 e x_3 = x_2 + 2  =  x_1 + 4 .

Lembre-se (x_1,x_2,x_3, \hdots , x_n ) é uma é uma progressão aritmética de razão r , então :

x_2 = x_1 + r

x_3 =  x_2 + r = x_1 + 2r

(...)

x_n =  x_{n-1} + r  =  x_{n-2} + 2r = x_{n-3} + 3r =  ... =  x_{n- (n-1)}  + (n-1)r  = x_1 + (n-1)r .

Se por hipótese f é uma função quadrática cuja imagem de f por x_1, x_2, x_3 são respct. -2 , 14,-34 , então suponha que

f(x) = ax^2 +bx + c (onde ab,c são constantes a ser determinadas ) .

Agora basta resolver o sistema de equações :

f(x_1) = -2 ,  f(x_1 + 2 ) = 14 , f(x_1 + 4) = 14 .

Ou se preferir (como eu faria ) , determine f(x_1  + k\cdot 2) . Obterá algo do gênero

f(x_1) +  \lambda \cdot a + \beta \cdot b (OBS.: Não fiz a conta apenas verifiquei mentalmente o formato da expressão geral )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59