• Anúncio Global
    Respostas
    Exibições
    Última mensagem

valor numérico

valor numérico

Mensagempor Apotema » Seg Nov 23, 2009 08:23

Considerando que A=cos12°+cos25°+...+cos142°+cos155°+cos168°. Calculando-se o valor numérico de A, podemos afirmar que f(A)=1+2ª vale:
a){2}^{3.2}+1
b)3
c)2
d)-1
e)5
pensei o seguinte, se for o item a) o expoente de 2 tem uma multiplicação, então, subtraio os expoentes (3-2=1) qualquer número elevado a 1 é ele mesmo, então seria 2+1, cos12° para cos25° é 2.12+1=25, seria isso???? Mas vi que não se enquadra para cos 142°, vi que não se encaixa na função f(A)=1+2ª. Percebi que em A em uma constante que soma 13, 12+13=25, 142+13=155, 155+13=168.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: valor numérico

Mensagempor Elcioschin » Seg Nov 23, 2009 12:53

Some o primeiro com o último e use a fórmula de transformação de soma em produto:

cos12º + cos168º = 2*cos[(168º + 12º)/2]*cos[(168º - 12º)/2]

cos12º + cos168º = 2*cos[180º/2]*cos[156º/2]

cos12º + cos168º = 2*cos[90º]*cos[78º] ----> cos90º = 0 ----> cos12º + cos168º = 0

Logo, todas a saomas são nulas ----> A = 0

f(A) = 1 + 2^A ----> f(A) = 1 + 2^0 ----> f(A) = 1 + 1 ----> f(A) = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: valor numérico

Mensagempor Apotema » Seg Nov 23, 2009 13:57

Elcioschin escreveu:Some o primeiro com o último e use a fórmula de transformação de soma em produto:

cos12º + cos168º = 2*cos[(168º + 12º)/2]*cos[(168º - 12º)/2]

cos12º + cos168º = 2*cos[180º/2]*cos[156º/2]

cos12º + cos168º = 2*cos[90º]*cos[78º] ----> cos90º = 0 ----> cos12º + cos168º = 0

Logo, todas a saomas são nulas ----> A = 0

f(A) = 1 + 2^A ----> f(A) = 1 + 2^0 ----> f(A) = 1 + 1 ----> f(A) = 2

Não entendi quando vc afirma f(a)=1+2^0 , pq 2^0=1?
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: valor numérico

Mensagempor Elcioschin » Seg Nov 23, 2009 18:33

2^0 = 2^(1- 1)

2^0 = (2^1)*[2^(-1)]

2^0 = 2^1/2^1

2^0 = 2/2

2^0 = 1
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.