• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade - Regra da Multiplicação

Probabilidade - Regra da Multiplicação

Mensagempor ricardo de azevedo » Seg Out 07, 2013 09:27

Bom dia,

Gostaria de tirar a dúvida neste problema:

Considere um lote de peças fabricadas por uma determinada industria. Neste lote há
60 peças das quais 5 são defeituosas. Duas peças são retiradas aleatoriamente deste
lote, uma após a outra. Determine a probabilidade de:
a) a primeira ser defeituosa e a segunda não ser defeituosa se as retiradas são feitas
sem reposição;
b) a primeira ter a mesma condição da segunda se as retiradas são feitas com reposição;
c) as duas serem defeituosas se as retiradas são feitas sem reposição.

Neste problema eu estou tentando fazer com a a regra da multiplicação e de eventos inde-
pendentes.
Também sei que quando a retirada é feita sem reposição eu vou abatendo no valor de Ome-
ga.
Estou chamando de Total - 60 peças
D - peças defeituosas - 05 peças
DN - peças não defeituosas - 55 peças.

Muito obrigado pela atenção.
ricardo de azevedo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Ago 23, 2013 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}