• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como separar equação diferencial ordinária.

Como separar equação diferencial ordinária.

Mensagempor Sobreira » Qui Set 26, 2013 09:06

Tenho dificuldade em reconhecer quando uma E.D.O é separável ou não. Sei que ela deve se apresentar desta forma:

\frac{dy}{dx}=h\left(x \right)g\left(y \right)

Mas não tenho total certeza sobre como tentar separar uma E.D.O corretamente.
Por exemplo, as equações a seguir eu resolvi por fator integrante mas acho que consigo separar. Consigo ou não ??

{x}^{2}\frac{dy}{dx}+x\left(x+2 \right)y={e}^{x}

L\frac{di}{dt}+Ri=E

Onde L, R, E são constantes.

Já nesta equação qual a diferença, em relação a separação, das formas abaixo:

x\frac{dy}{dx}-Ln xy=0

x\frac{dy}{dx}-Ln (xy)=0
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Qui Set 26, 2013 14:19

esta primeira não da para separar

x^2\frac{dy}{dx}+x(x+2)y=e^x

\frac{dy}{dx}=\frac{e^x-x(x+2)y}{x^2}

veja que não da para separar em uma função de y vezes uma função de x

a segunda da para separar

L\frac{di}{dt}+R.i=E

\frac{di}{dt}=\frac{E-R.i}{L}

onde h(t)=1 e g(i)=E-Ri

a terceira equação imagino que seja

x\frac{dy}{dx}-ln(x).y=0

\frac{dy}{dx}=\frac{ln(x)}{x}.y

então h(x)=\frac{ln(x)}{x} e g(y)=y

ja esta ultima tambem não da para seprar

x\frac{dy}{dx}-ln(xy)=0

x\frac{dy}{dx}-ln(x)-ln(y)=0

\frac{dy}{dx}=\frac{ln(x)+ln(y)}{x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor Sobreira » Sáb Set 28, 2013 09:25

young_jedi escreveu:esta primeira não da para separar

x^2\frac{dy}{dx}+x(x+2)y=e^x

\frac{dy}{dx}=\frac{e^x-x(x+2)y}{x^2}

veja que não da para separar em uma função de y vezes uma função de x


Então...aí que está.
Eu não consigo entender como é possível verificar se as funções irão se apresentar como produto ou não.
Pelo que eu entendi não pode haver soma entre x e y ???

Neste termo eles estão digamos amarrados??? mas e se eu expandir não vou ter a separação???

-x(x+2)y

Por exemplo:

{x}^{2}y-2xy

E daí eu poderia separar ???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Sáb Set 28, 2013 11:44

este termo você consegue seperar

x(x+2)y

o problema é que também temos uma exponencial de x

e^x-x(x+2)y

por isso você não consegue separar

realmente você não pode ter uma soma entre x e y por exemplo

\frac{dy}{dx}=x+y

essa função você também não consegue separar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor Sobreira » Sáb Set 28, 2013 12:46

Este meu desenvolvimento estaria correto ???

{x}^{2}\frac{dy}{dx}+{x}^{2}y+2xy={e}^{x}

\frac{dy}{dx}=\frac{{e}^{x}-{x}^{2}y-2xy}{{x}^{2}}

\frac{dy}{dx}=\frac{{e}^{x}}{{x}^{2}}-\frac{{x}^{2}y}{{x}^{2}}-\frac{2xy}{{x}^{2}}

\frac{dy}{dx}=\frac{{e}^{x}}{{x}^{2}}-\frac{y}{{x}^{2}}-\frac{2y}{x}

A partir dái, sinceramente já não consigo mais separar.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como separar equação diferencial ordinária.

Mensagempor young_jedi » Sáb Set 28, 2013 18:13

esta certo a partir dai não da para separar mais!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}