• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão complicada de volume.

Questão complicada de volume.

Mensagempor ravi » Qui Set 19, 2013 15:36

Boa tarde, tentei resolver essa questão que foi de uma prova que fiz, mas não consegui muito coisa.

Seja R uma região plana limitada pelas curvas y=f(x) e y=g(x) inteiramente contida de um lado do eixo y. Mostre que se R é girada ao redor do eixo y, então o volume do sólido resultante é o produto da área A de R e a distância d percorrida pelo centróide de R.
ravi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 31, 2012 13:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Questão complicada de volume.

Mensagempor young_jedi » Sex Set 20, 2013 21:39

o centroide de R tem coordenadas dadas por

\overline{x},\overline{y}

a fazer um giro em torno de y temos que o caminho que ele percorre sera

2\pi.\overline{x}

temos que


\overline{x}=\int x.(f(x)-g(x))dx

e temos que o volume do solido obtido pela rotação

V=\int 2\pi.x.(f(x)-g(x))dx

V=2\pi\int x.(f(x)-g(x))dx

ou seja

V=2\pi.\overline{x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}