• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação diferencial] Solução incorreta?

[Equação diferencial] Solução incorreta?

Mensagempor KleinIll » Qui Set 19, 2013 15:45

O enunciado pede para mostrar que y = {x}^{\frac{1}{2}} é uma solução para a equação diferencial:

{x}^{2}\frac{{d}^{2}y}{d{x}^{2}} + 5x\frac{dy}{dx} + 4y = 0

Eu resolvi as derivadas para substituir, porém a minha conta deu \frac{25}{4}{x}^{\frac{1}{2}}.

Como o enunciado pede para MOSTRAR, a soma deveria ser 0 para satisfazer a equação.

Alguém pode conferir, por favor? Obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Equação diferencial] Solução incorreta?

Mensagempor young_jedi » Sex Set 20, 2013 18:34

calculando as derivadas temos

\frac{dy}{dx}=\frac{1}{2}.\frac{1}{x^{\frac{1}{2}}}

\frac{d^2y}{dx^2}=-\frac{1}{4}.\frac{1}{x^{\frac{3}{2}}}

substituindo na equação

-x^2.\frac{1}{4}.\frac{1}{x^{\frac{3}{2}}}+5x.\frac{1}{2}.\frac{1}{x^{\frac{1}{2}}}+4.x^{\frac{1}{2}}

-\frac{x^{\frac{1}{2}}}{4}+\frac{5x^{\frac{1}{2}}}{2}+4.x^{\frac{1}{2}}=\frac{25x^{\frac{1}{2}}}{4}

sua resolução esta correta deve ser algum erro de enunciado
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação diferencial] Solução incorreta?

Mensagempor KleinIll » Sáb Set 21, 2013 01:15

Obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.