-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Abr 01, 2008 23:52
Olá Ananda!
Vi uma "luz" aqui, vou comentar...
Antes, para simplificar as referências pelo tamanho, apenas mudei as letras do enunciado para maiúsculas:
Um cone circular reto de altura

e raio da base

é cortado por um plano paralelo à base. Calcular a altura do cone parcial assim determinado, de modo que a sua superfície lateral seja equivalente à superfície lateral do tronco de cone assim obtido.
Resposta:

Considere uma seção meridiana do cone grande.
Nela, destaquei os triângulos abaixo:

- triangulos_semelhantes.jpg (20.91 KiB) Exibido 17514 vezes
Note que eles são semelhantes pelo caso AA ângulo-ângulo (ângulo reto correspondente e ângulo comum no topo).
Daqui, temos que:

Vamos conversando...
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 09:27
Bom dia!
Tinha enxergado isso depois rs
Vamos ver o que consigo hoje =D
Até mais!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qua Abr 02, 2008 12:56
Olá Ananda, bom dia!
Ótimo!
Apenas para expandir o conteúdo, vou comentar uma alternativa para esta sua prática e correta conclusão:
Como a área lateral do cone obtido e a do tronco são iguais, a área lateral do cone obtido deve ser a metade da área do cone original.
Com isso:

Primeiro, vamos mostrar como obter a área lateral do cone pequeno

.
Considere o cone aberto e planificado, conforme a figura:

- cone_area_lateral.jpg (31.45 KiB) Exibido 17452 vezes
Calcular a área lateral do cone pequeno é equivalente a calcular a área do setor circular

.
E

é a medida do arco determinado pelo círculo da base de raio

.
E

é a medida do arco determinado pelo círculo da base de raio

.
Fazendo uma regra de três relacionando área com arco:


A área do tronco

obtemos por diferença:
Sendo

a área do cone grande, a área que procuramos é

Para

fazemos um processo análogo ao anterior e obtemos

Então

Conforme o enunciado, queremos que

, logo


(chegamos àquela conclusão)


(achei mais imediato utilizar aqui a conseqüência dos triângulos semelhantes)





Entendendo este processo, não precisamos "alocar memória" para a "fórmula" da área lateral de um cone, pois podemos obtê-la rapidamente.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 13:48
Hm, entendi!
Mas é sempre bom saber da onde vem as fórmulas do que ficar decorando rs
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como chegar a formula de tronco de cone
por alinemuller » Ter Mai 11, 2010 17:36
- 0 Respostas
- 1746 Exibições
- Última mensagem por alinemuller

Ter Mai 11, 2010 17:36
Pedidos
-
- [Geometria Espacial] Volume do tronco do cone
por jukkax » Sáb Out 19, 2013 21:32
- 1 Respostas
- 3437 Exibições
- Última mensagem por young_jedi

Dom Out 20, 2013 22:43
Geometria Espacial
-
- [tronco de cone / área lateral] geometrial espacial
por sandra silva » Ter Ago 26, 2008 22:08
- 2 Respostas
- 7008 Exibições
- Última mensagem por sandra silva

Qua Ago 27, 2008 07:34
Geometria Espacial
-
- [Dúvida]Aplicações de Integração - Volume do Tronco de Cone
por Jhonata » Dom Jun 10, 2012 12:45
- 2 Respostas
- 9279 Exibições
- Última mensagem por Jhonata

Ter Jun 12, 2012 12:20
Cálculo: Limites, Derivadas e Integrais
-
- Relação entre raio e altura - Tronco de Cone
por pvgomes07 » Dom Ago 05, 2012 17:53
- 2 Respostas
- 6762 Exibições
- Última mensagem por pvgomes07

Ter Ago 07, 2012 00:58
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.