• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Euclidiana Plana]

[Geometria Euclidiana Plana]

Mensagempor Pessoa Estranha » Sáb Ago 31, 2013 19:20

Olá Pessoal! Gostaria de ajuda para fazer a seguinte demonstração (pode ser uma ideia apenas).

Seja P um ponto interior do triângulo ABC. Mostre que (ângulo) BPC > (ângulo) BAC.

Valeu!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor e8group » Sáb Ago 31, 2013 19:59

Boa noite . A desigualdade se verifica de imediato pela soma dos ângulos internos dos triângulos BPC e BAC que corresponde a 180° ,pelo menos foi assim que conseguir demonstrar tal desigualdade . Se você não conseguir posto mais dicas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor Pessoa Estranha » Sáb Ago 31, 2013 21:35

Olá, boa noite! Pois é, este seria um bom resultado, mas acontece que eu não posso usar o fato de que a soma dos ângulos internos de um triângulo corresponde à 180, pois ocorre o seguinte: estou estudando por um livro (Geometria Euclidiana Plana e Construções Geométricas) que preciso procurar resolver os exercícios conforme o capítulo, ou seja, se num determinado capítulo há certa quantidade de teoremas e seus resultados, eu devo usá-los na resolução dos problemas do capítulo. Não sei se fui muito clara. Na verdade, estou estudando para prova, mas eu já estudei capítulos posteriores ao deste exercício. O capítulo deste problema é o 3, tal que trata de Desigualdades Geométricas. A parte que demonstra o teorema da soma dos ângulos internos de um triângulo é o próximo, 4, que trata, basicamente, do assunto de retas paralelas e as transversais. Acredito que se estivesse na prova esta questão, claramente eu poderia aplicar qualquer resultado visto até então, ou seja, incluindo os resultados de 1, 2, 3, 4 e 5 (capítulos). O erro foi meu, pois não especifiquei o que eu realmente queria. Estou fazendo isto mais para treinamento. Peço desculpas e se puder propor outra ideia....

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor e8group » Sáb Ago 31, 2013 22:36

Boa noite .Infelizmente não conseguir resolver o exercício de outra forma ,ainda não possuo uma boa base em Geometria Euclidiana plana,pesquisei na net o livro que você citou mas não conseguir encontrá-lo ,mas achei um outro material similar muito bom o qual vou estudar alguns resultados que possam ser aplicados a este exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor Pessoa Estranha » Sáb Ago 31, 2013 23:14

Olá.... Olha, eu não quero incomodar. Você vai estudar o livro para ajudar-me? Por favor, não se preocupe, pois eu realmente posso resolver o exercício usando a soma dos ângulos internos de um triângulo, apenas gostaria de treinar usando a ordem do livro (Geometria Euclidiana Plana e Construções Geométricas - Eliane Quelho Frota Rezende - Maria Lúcia Bontorim De Queiroz - Editora Unicamp - 2ª Edição). Mas, mesmo assim, muito obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor Bruna R » Ter Jan 10, 2017 14:06

Oi, eu cheguei a um resultado mas gostaria que alguém olhasse com um olhar crítico pois posso ter me precipitado em algo.

(Usei o símbolo ^ para indicar ângulo)
-Trace a reta BP e marque S como o ponto de intersecção entre BP e AC;
-Obtemos os triângulos ASB e CPS;
-Observe que ^PSC>^BAS pois ^PSC é externo ao triângulo ASB, e, ^BPC>^PSC pois ^BPC é externo ao triângulo PSC;
-Daí, ^BPC>^PSC>^BAS => ^BPC>^BAS;
-E, como S pertence a reta AC, ^BAS=^BAC.
-Logo, ^BPC>^BAC.
Bruna R
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 10, 2017 13:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Euclidiana Plana]

Mensagempor adauto martins » Dom Jan 15, 2017 11:45

temos q. \Delta BPC esta inscrito no \Delta ABC\Rightarrow a(CAB)+a(ACB)\succ a(CBP)+a(BCP)\Rightarrow -(a(cAB)+a(ACB))\prec -(a(CBP)+a(BCP)...,onde a(...) é o angulo formado pelos segmento adjacentes...logo:
a(BAC)=180-(a(CAB)+a(ACB))\prec 180-(a(CBP)+a(BCP))=a(BPC)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 676
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D