por e8group » Sáb Ago 31, 2013 20:37
Conseguir resolver da seguinte forma ,tome k = mdc(a,b) ,onde b = (n+1)! + 1 = n!(n+1) + 1 e a = n! + 1 . Ora ,se (i) k divide a e b então k divide (b-a) [é fácil ver !] . Como b-a = n!(n+1) + 1 - [n! + 1] = n!(n+1 - 1) = n n! = n^2 (n-1)(n-2) ... 1 concluímos que sendo (i) verdadeiro implica k divide n^2 (n-1)(n-2) ... 1 (ii) .Se tivéssemos k != 1 , a divisão dos números a e b por k deixaria resto 1 (pois (ii) é verdadeiro), contrariando a divisibilidade dos números a e b por k ,assim segue que k = 1 ,i.e , mdc(a,b) = 1 .Por favor exponha o que você tentou , acha que minha solução está correta ?