• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PA]

[PA]

Mensagempor Micael » Ter Ago 13, 2013 11:44

Obter 5 números reais de uma P.A ,sabendo que a soma é 5 e a soma de seus inversos é 563/63 ...

Como faz esse tipo de questão?
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [PA]

Mensagempor Russman » Ter Ago 13, 2013 15:29

Sejam esses números x_1, x_2,..., x_5.

Micael escreveu:sabendo que a soma é 5


x_1 + x_2 + x_3 + x_4 + x_5 = 5

Micael escreveu:e a soma de seus inversos é 563/63


\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} + \frac{1}{x_5} = \frac{563}{63}

Agora, para facilitar as contas, tome a P.A. como \left \{ x-2r,x-r,x,x+r,x+2r \right \} que de imediato você obtem, da primeira relação, x=1. Agora coloque esses valores na relação 2 e obterá uma equação em r.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.