por geobson » Sáb Ago 10, 2013 15:08
ja tentei ,mas não consegui resolver este problema de somatória .foi retirado do livro geometria plana simples assim de wanderson coelho cardoso ,no capítulo de triângulos retângulos.deve ter algo a ver com o teorema de pitágoras...
por favor quem souber resolva ou pelo menos alguma sugestão
desde ja fico grato...
para todo n positivo, seja

ovalor mínimo da soma :

![\sqrt[]{(k-1)²+ak²} \sqrt[]{(k-1)²+ak²}](/latexrender/pictures/801f7567ac1c51d466bf588bff446099.png)
, onde

,

, ...,

são numeros reais positivos cuja soma é igual a 17. sabendo que existe um único número inteiro positivo n para o qual

é também um número inteiro , o valor de n é igual a :
a)10
b)12
c)15
d)16
e)17
não sei explicar ,mas o  dentro da raiz (a maiúsculo não existe na expressao )!!!!!!!!!!!!!! a expressão (2k-1)²+ak² existe mas o  não existe
-
geobson
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Ago 03, 2013 22:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por young_jedi » Dom Ago 11, 2013 18:52
pensei no seguinte se considerarmos triângulos retângulos todos semelhantes com catetos dados por

e

então a hipotenusa de cada triangulo sera

sendo assim o somatorio é igual ao a soma das hipotenusas desses triangulos
como todos os triângulos são semelhantes então existe um triângulo semelhante aos demais em que seus catetos são dados pela soma dos catetos de todos esses trianulos e a hipotenusa é a soma de todas as hipotenusas de todos esses triângulos, sabemos que a soma dos catetos

portanto um dos catetos desse triangulo é 17 e o outro é dado pela soma



então o outro cateto mede

então a hipotenusa que é igual ao somatório que queremos encontrar é dada por

temos que encontrar um valor para n para o qual essa raiz de um valor exato
dos valores dados ai nas respostas o que satisfaz é n=12

não sei se tem outra forma de se resolver, vou continuar pensando qualquer evolução eu posto aqui
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Dom Ago 11, 2013 21:19
Muito interessante a solução acima .Só gostaria de acrescentar mais uma ideia de forma a não usarmos as alternativas para calcular o valor de

.
Conforme young jedi propôs sendo todos triângulos retângulos(nomeando eles de

) de catetos

e hipotenusa

(que vamos designar por

) semelhantes . Evidenciando a constante de proporcionalidade dos lados dos triângulos

concluímos que o triângulo retângulo de catetos

e hipotenusa

é semelhante a todos triângulos retângulos

. Agora notamos que a hipotenusa deste triângulo retângulo é estritamente maior que

, pois ,

.
Tomemos então um

natural de modo que ,

. Elevando ao quadrado e simplificando ,

. Aqui cabe analisar se

ou

divide

.É fácil verificar que

não divide tal número . Assim , segue :

(pois caso fosse

chegaríamos em um absurdo

uma vez que

) . Daí obtemos

e portanto

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por young_jedi » Dom Ago 11, 2013 23:31
excelente demonstração santhiago, valeu ai pela força !!!
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.