• Anúncio Global
    Respostas
    Exibições
    Última mensagem

quadrado com triângulos construídos em seu interior

quadrado com triângulos construídos em seu interior

Mensagempor geobson » Sáb Ago 03, 2013 23:09

há mais de um mês tento conseguir uma solução para o problema abaixo . por favor , se alguém puder me ajudar com a solução ou pelo menos com uma dica , ficarei muito agradecido.

seja E um ponto interior de um quadrado ABCD , de modo que AE=c, BE=a e CE=a + b, onde a² + b² = c² . A medida do ângulo BÊC é igual a :

a)30º
b)45º
c)60º
d)90º
e)120º
f)135º
geobson
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Ago 03, 2013 22:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: quadrado com triângulos construídos em seu interior

Mensagempor young_jedi » Seg Ago 05, 2013 19:49

amigo, entendi que o desenho da questão fica da seguinte maneira

quad.png
quad.png (3.21 KiB) Exibido 821 vezes


considerando que o lado do quadrado vale L nos podemos tirar as seguintes relações analisando o trianguloa AEB

c^2-a^2cos^2\theta=(L-a^2sen^2\theta)

a^2+b^2-a^2cos^2\theta=L^2-2.L.a.sen\theta+a^2sen^2\theta

a^2sen^2\theta+b^2=L^2-2.L.a.sen\theta+a^2sen^2\theta

b^2=L^2-2.L.a.sen\theta

analisando o triangulo BEC tiramos

(a+b)^2-a^2sen^2\theta=(L-a^2cos^2\theta)

a^2+2ab+b^2-a^2sen^2\theta=L^2-2.L.a.cos\theta+a^2cos^2\theta

a^2sen^2\theta+2ab+b^2=L^2-2.L.a.cos\theta+a^2cos^2\theta

2ab+b^2=L^2-2.L.a.cos\theta

subtraindo a primeira equação encontrada da segunda temos

2ab=2.L.a.sen\theta-2.a.L.cos\theta

b=L.sen\theta-L.cos\theta

fazendo uma segunda analise da figura temos

quad2.png
quad2.png (4.16 KiB) Exibido 821 vezes


dai tiramos a seguinte relação

L.cos\theta=(a+b).cos(180-\alpha)+a

L.cos\theta=a-(a+b).cos(\alpha)

e pela lei dos senos tiramos que

\frac{L}{sen\alpha}=\frac{a+b}{sen\theta}

L.sen\theta=(a+b)sen\alpha

substituindo essa relação na equação b=L.sen\theta-L.cos\theta temos

b=(a+b).sen\alpha-a+(a+b).cos\alpha

a+b=(a+b)(sen\alpha+cos\lapha)

1=sen\alpha+cos\alpha

resolvendo esta equação chegamos em \alpha=90^o
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}