• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Crescimento de uma população de rãs com integral.

Crescimento de uma população de rãs com integral.

Mensagempor Matheus Lacombe O » Dom Ago 04, 2013 18:26

Olá! tentei resolver a questão 6.3.70 (HOWARD Anton, Calculo- 8º edição, p.373) mas minhas respostas sempre dão fracionárias (como pode 0,37 rã??) e eu não consegui o gabarito desta questão que é par.

- A seguinte questão diz que um certo lago possui uma quantidade de rãs em um ano e quer saber a quantidade de rãs em 't' anos depois, com base em um modelo matemático de crescimento, sendo que o livro só da a derivada desse modelo de crescimento.

Enunciado na integra:

http://uploaddeimagens.com.br/imagens/enunciado-png

\frac{d}{dt}\left[p(t)\right]={(3+0,12t)}^{\frac{3}{2}}

\int_{}^{}\frac{d}{dt}\left[p(t)\right]dt=\int_{}^{}{(3+0,12t)}^{\frac{3}{2}}dt

p(t)=\int_{}^{}{(3+0,12t)}^{\frac{3}{2}}dt

u=3+0,12t

du=0,12dt

dt=\frac{du}{0,12}

dt=\frac{du}{\frac{3}{25}}=\frac{25du}{3}

p(t)=\frac{25}{3}\int_{}^{}{u}^{\frac{3}{2}}du

p(t)=\frac{25}{3}.\frac{{u}^{\frac{5}{2}}}{\frac{5}{2}}+C

p(t)=\frac{25}{3}.\frac{2}{5}\frac{{u}^{\frac{5}{2}}}{1}+C

p(t)=\frac{10}{3}.\frac{{u}^{\frac{5}{2}}}{1}+C

p(t)=\frac{10}{3}.{(3+0,12t)}^{\frac{5}{2}}+C

de 2005 a 2010 - 5 anos. t=5

p(5)=\frac{10}{3}.{(3+0,12.5)}^{\frac{5}{2}}+C

p(5)=\frac{10}{3}.{\left(3+\frac{3}{25}.5\right)}^{\frac{5}{2}}+C

p(5)=\frac{10}{3}.{\left(3+\frac{3}{5}\right)}^{\frac{5}{2}}+C

p(5)=\frac{10}{3}.{\left(\frac{18}{5}\right)}^{\frac{5}{2}}+C

p(5)=\frac{10}{3}.\sqrt[]{{\left(\frac{18}{5}\right)}^{5}}+C

p(5)=\frac{10}{3}.\sqrt[]{{\left(\frac{18}{5}\right)}^{2}.{\left(\frac{18}{5}\right)}^{2}.\left(\frac{18}{5}\right)}+C

p(5)=\frac{10}{3}.\frac{18}{5}.\frac{18}{5}\sqrt[]{\frac{18}{5}}+C

p(5)=\frac{2}{1}.\frac{6}{1}.\frac{18}{5}\sqrt[]{\frac{18}{5}}+C

p(5)=\frac{216}{5}.\frac{\sqrt[]{18}}{\sqrt[]{5}}+C

p(5)=\frac{216}{5}.\frac{3\sqrt[]{2}}{\sqrt[]{5}}+C

p(5)=\frac{648\sqrt[]{2}}{5\sqrt[]{5}}+C

- Bom.. Sabendo que no ponto '0', ou seja, no ano '0', que é o ano de 2005, há 100.000 rãs..

p(0)=\frac{10}{3}.{\left(3+\frac{3}{25}.0\right)}^{\frac{5}{2}}+C

100000=\frac{10}{3}.{\left(3\right)}^{\frac{5}{2}}+C

100000=\frac{10}{3}.\sqrt[]{{3}^{5}}+C

100000=\frac{10}{3}.\sqrt[]{{3}^{2}.{3}^{2}.3}+C

100000=\frac{10}{3}.3.3\sqrt[]{3}+C

100000=10.3\sqrt[]{3}+C

100000=30\sqrt[]{3}+C

C=100000-30\sqrt[]{3}

- logo:

p(5)=\frac{648\sqrt[]{2}}{5\sqrt[]{5}}+100000-30\sqrt[]{3}

- E agora???? Essa não pode ser a resposta, pode?
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: Crescimento de uma população de rãs com integral.

Mensagempor Russman » Seg Ago 05, 2013 11:03

Pode sim, pq não?

Calcule uma aproximação inteira do valor qe você calculou.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Crescimento de uma população de rãs com integral.

Mensagempor Matheus Lacombe O » Ter Ago 06, 2013 13:56

Ummmm... Mas, então ta certo??
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: Crescimento de uma população de rãs com integral.

Mensagempor Russman » Ter Ago 06, 2013 13:59

Acredito que sim.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.