por Jhenrique » Ter Jul 02, 2013 19:10
Falae gente, blz!?
Deem uma breve olhada nas definições em edp com relação a x, y, z, r, p, ?, ? e ? do operador nabla aplicado às funções de campo...
http://fr.wikipedia.org/wiki/Nablaquando o laplaciano, por exemplo, está definido no sistema cartesiano, tem-se ?²f/?x² + ?²f/?y² + ?²f/?z² , mas quando está definido no sistema esférico ou cilíndrico, então a definição fica bem mais cabulosa...
Em vez de ter que decorá-las, eu gostaria de saber como deduzi-las. Poderiam me demonstrar dá onde elas vem!?
Segue estas relações caso possa ajudá-los a me ajudar...

Vlw!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo Vetorial
por roger0196 » Seg Abr 04, 2011 15:02
- 6 Respostas
- 5390 Exibições
- Última mensagem por Jackie

Ter Abr 26, 2011 20:20
Geometria Analítica
-
- Calculo Vetorial
por Renato Lima » Qua Abr 27, 2011 22:21
- 1 Respostas
- 2092 Exibições
- Última mensagem por LuizAquino

Qua Abr 27, 2011 23:12
Geometria Analítica
-
- GA e Calculo Vetorial
por camposhj » Sex Out 07, 2011 00:41
- 3 Respostas
- 2468 Exibições
- Última mensagem por LuizAquino

Sex Out 07, 2011 13:06
Geometria Analítica
-
- cálculo vetorial
por fasaatyro » Sáb Mai 02, 2015 12:02
- 0 Respostas
- 1283 Exibições
- Última mensagem por fasaatyro

Sáb Mai 02, 2015 12:02
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Função vetorial
por cristian9192 » Sex Out 26, 2012 15:18
- 1 Respostas
- 1758 Exibições
- Última mensagem por young_jedi

Sex Out 26, 2012 16:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.