por Celma » Seg Jul 01, 2013 19:02
Olá!
Os pontos A e B pertencem a uma circunferência de centro O e raio 3 de modo que o ângulo AOB mede 2 radianos. O comprimento do arco AB é:
A resposta correta é 6, mas eu não sei chegar neste resultado, sei que é simples mas, tenho muita dificuldade em trigonometria. Alguém poderia resolvê-lo?
grata!
-
Celma
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Jun 28, 2013 12:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por young_jedi » Seg Jul 01, 2013 19:45
o comprimento do arco de um circulo se da pelo produto do ângulo em radianos pelo raio sendo assim 2.3=6
outro exemplo seria analisar o perímetro de circulo, sendo 360 graus uma volta completa e sabendo que isso equivale a

então o comprimento total do circulo é igual a

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Celma » Seg Jul 01, 2013 20:27
young_jedi escreveu:o comprimento do arco de um circulo se da pelo produto do ângulo em radianos pelo raio sendo assim 2.3=6
outro exemplo seria analisar o perímetro de circulo, sendo 360 graus uma volta completa e sabendo que isso equivale a

então o comprimento total do circulo é igual a

Muito obrigada
-
Celma
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Jun 28, 2013 12:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de Concurso-Trigonometria
por Pri Ferreira » Qua Mar 21, 2012 13:58
- 1 Respostas
- 1183 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 15:20
Trigonometria
-
- [trigonometria] concurso magistério 2007 (33)
por fernandocez » Sex Dez 20, 2013 09:27
- 2 Respostas
- 1856 Exibições
- Última mensagem por fernandocez

Sáb Dez 21, 2013 16:38
Trigonometria
-
- Exercicio de concurso
por renata_edif » Ter Fev 15, 2011 10:19
- 0 Respostas
- 2283 Exibições
- Última mensagem por renata_edif

Ter Fev 15, 2011 10:19
Pedidos
-
- Exercício probabilidade para concurso
por deividchou » Qua Mai 11, 2016 17:33
- 0 Respostas
- 3052 Exibições
- Última mensagem por deividchou

Qua Mai 11, 2016 17:33
Probabilidade
-
- Exercício de Trigonometria
por felipexxavier » Seg Mar 31, 2008 11:38
- 4 Respostas
- 13926 Exibições
- Última mensagem por felipexxavier

Seg Mar 31, 2008 17:56
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.