por raimundoocjr » Sáb Jun 29, 2013 17:40
Determinar

.
Qualquer ajuda é bem-vinda. Gostaria de uma resolução passo-a-passo com as ideias essenciais. Sem usar a Regra de L'Hôspital.
Gabarito:

.
-
raimundoocjr
-
por e8group » Sáb Jun 29, 2013 17:57
Definida a função inversa da tangente , temos que

.Assim ,

. Logo , quando

e portanto

, conlusão quando

em outras palavras ,

.
Dica : Esboçe o gráfico da função tangente .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [função trigonométrica inversa]
por Ana_Rodrigues » Sáb Jan 21, 2012 18:39
- 0 Respostas
- 777 Exibições
- Última mensagem por Ana_Rodrigues

Sáb Jan 21, 2012 18:39
Funções
-
- [Dúvida]Função Trigonométrica Inversa em Integral.
por Jhonata » Qui Jun 07, 2012 18:06
- 2 Respostas
- 1846 Exibições
- Última mensagem por Jhonata

Qui Jun 07, 2012 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] função trigonométrica
por rafaelbr91 » Ter Mar 27, 2012 17:51
- 2 Respostas
- 2067 Exibições
- Última mensagem por rafaelbr91

Ter Mar 27, 2012 18:43
Cálculo: Limites, Derivadas e Integrais
-
- Limite de uma função trigonométrica
por Douglas16 » Seg Mar 11, 2013 14:45
- 1 Respostas
- 1317 Exibições
- Última mensagem por Douglas16

Seg Mar 11, 2013 15:32
Cálculo: Limites, Derivadas e Integrais
-
- Limite de uma função trigonométrica
por Douglas16 » Sáb Mar 16, 2013 21:52
- 3 Respostas
- 2099 Exibições
- Última mensagem por e8group

Dom Mar 17, 2013 00:34
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.