A soma das coordenadas do ponto na curva
, cuja reta perpendicular a ela passa por (14,1) é 6.
, cuja reta perpendicular a ela passa por (14,1) é 6.

, cuja reta perpendicular a ela passa por (14,1) é 6.
é uma função linear de x, elas se interceptam x=0 ou x=2. Com x=2, f(x)=4 e o ponto (2,4) responde à questão. Mas não consigo provar que neste ponto a reta é perpendicular à curva.


. Um vetor diretor da reta que passa por (2,4) e (14,1) é
.
, e portanto, a reta tangente tem a forma
. Substituindo o ponto (2,4) temos que 



Voltar para Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.