por Marcossiva » Sex Jun 28, 2013 10:59
Na resolução de uns exercícios me deparei com a seguinte questão :

para calcular o comprimento de uma curva polar:

A Questão ate me parece simples só que me gerou uma dúvida pelos vetores, é o que tá na formula mesmo ? o

+ a derivada do mesmo ?
-
Marcossiva
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Jun 21, 2013 23:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Sex Jun 28, 2013 11:35
neste caso oque eu sugiro é utilizar a seguinte relação

e calcular o comprimento pela relação

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por young_jedi » Sex Jun 28, 2013 11:35
neste caso oque eu sugiro é utilizar a seguinte relação

e calcular o comprimento pela relação

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Marcossiva » Sex Jun 28, 2013 11:53
Obrigado pela dica.
Vou tentar.
-
Marcossiva
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Jun 21, 2013 23:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [comprimento da curva] Exercicio de comprimento do grafico?
por didone » Sex Abr 12, 2013 17:44
- 1 Respostas
- 1885 Exibições
- Última mensagem por young_jedi

Seg Abr 15, 2013 21:44
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento de curva
por dsbonafe » Ter Out 13, 2009 16:39
- 1 Respostas
- 2759 Exibições
- Última mensagem por Camolas

Sex Mai 31, 2013 15:27
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento da curva
por Crist » Qui Nov 29, 2012 13:32
- 6 Respostas
- 3707 Exibições
- Última mensagem por young_jedi

Ter Dez 11, 2012 11:01
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento de curva
por Danilo » Seg Nov 25, 2013 22:02
- 1 Respostas
- 1442 Exibições
- Última mensagem por Bravim

Ter Nov 26, 2013 03:26
Cálculo: Limites, Derivadas e Integrais
-
- comprimento da curva ln(1-x^2), 0<=x<=1/2.
por nandooliver008 » Sex Jun 06, 2014 13:07
- 1 Respostas
- 2481 Exibições
- Última mensagem por Man Utd

Dom Jul 27, 2014 00:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.