• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões aritméticas - Qual o valor de K

Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 05:26

Em uma P.A ({a}_{1}, {a}_{2}, {a}_{3}, ..., {a}_{k},..., {a}_{50}, )
Onde {a}_{2} = 14 e {a}_{5} - {a}_{3} = 18, {a}_{k} = 239, então k é igual a quanto ?

Na formula para do {a}_{k} temo isso não é:

{a}_{k} =\frac{ {a}_{k-1} + {a}_{k+1}}{2}

mas como encontrar o k ?
Essa eu não compreendi :$

só sei isso com esse k :(

{a}_{239} =\frac{ {a}_{239-1} + {a}_{239+1}}{2}

239  =\frac{  239-1 + 239+1 }{2}

239*2  =  239-1 + 239+1


No caso o {a}_{n} é o último número, o n é a quantidade de termos da P.A, o {a}_{k} seria a media aritmética entre o antecedente e o consequente...
e o k seria o que ?

Estou totalmente fora do rumo nos pensamentos... alguém pode me dar uma ajuda do caminho? Agradeço desde já por a atenção de quem se der o trabalho de ajudar, muito obrigado mesmo ...
Editado pela última vez por netolucen4 em Sex Jun 21, 2013 23:29, em um total de 2 vezes.
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sex Jun 21, 2013 21:10

os temors de uma PA são dados por

a_n=a_1+(n-1).r

onde r é razão da PA, isso você com certeza sabe

aplique isso para os termos a3 e a5 e calcule e a diferença entre eles como foi dado no enunciado, com isso você encontrara r e depois achar ak é tranquilo, se tiver duidas comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 22:28

{a}_{2} = {a}_{1} + (2-1)r
14 = {a}_{1} + (2-1)r
{a}_{1} + (2-1)r = 14
{a}_{1} + r = 14
{a}_{1} = 14 - r

creio que o r seria esse:
{a}_{5} = 14 + 3r
{a}_{3} = 14 + r
{a}_{5} - {a}_{3} =  14 + 3r -14 - r = 18
14 + 3r -14 - r = 18
3r- r = 18
2r = 18
r = \frac{18}{2}=9

Mas como encontrar o k?
o {a}_{k} já foi dado como 239, mas o que é o k... isso é que não entendi *-) :$
O que tenho que usar para achar o k ?
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sex Jun 21, 2013 23:05

na verdade você tem que a5-a3 é igual a 14 e a2 igual a 18, você se confundiu na hora de substituir.
após corrigir e encontrar o r utilize

a_k=a_1+(k-1)r

239=a_1+(k-1)r
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 23:55

vou tentar .-.
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sex Jun 21, 2013 23:57

Não '-' confundi não a questão diz que a5-a3 é igual a 18 e a2 igual a 14

Imagem

com as orientações que você me passou (que agradeço muito, muito, muito mesmo) encontrei o valor de 27 para K ...
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor young_jedi » Sáb Jun 22, 2013 11:06

Esta certo é isso mesmo!!!

k=27
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressões aritméticas - Qual o valor de K

Mensagempor netolucen4 » Sáb Jun 22, 2013 16:08

Muito obrigado por a paciência e mostrar o caminho para resolver a questão Young
Agradeço muito mesmo...
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?