por Blame » Ter Jun 18, 2013 18:32
Determinar a equação da reta tangente as curvas nos pontos indicados e esboçar o gráfico:
f(x)= x(3x - 5) ; x=1/2, x=a
Então, eu to com problemas nessa questão pq eu sei fazer com os pontos x,y (ou pelo menos acho, é só fazer a derivada e colocar na fórmula certo?) mas quando ele me dá dois x eu não sei o que fazer. E sim, eu tentei coisas, tipo achei o y quando x = 1/2 (foi meu primeiro passo ) e ai eu considerei e também o 'a' está me confundindo (mas tem outra parecida que o x não vale a).
-
Blame
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 24, 2013 19:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular reta tangente e normal à curva
por Kingflare » Dom Dez 07, 2014 23:54
- 1 Respostas
- 2573 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 14:15
Cálculo: Limites, Derivadas e Integrais
-
- determinar o ângulo formado pela reta tangente à uma curva.
por theSinister » Dom Ago 14, 2011 17:45
- 1 Respostas
- 3045 Exibições
- Última mensagem por LuizAquino

Seg Ago 15, 2011 16:57
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] declividade da reta tg a curva z
por doleand » Sáb Jun 01, 2013 15:01
- 0 Respostas
- 650 Exibições
- Última mensagem por doleand

Sáb Jun 01, 2013 15:01
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8552 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Reta tangente
por emsbp » Qua Mai 02, 2012 18:28
- 2 Respostas
- 1795 Exibições
- Última mensagem por emsbp

Qui Mai 03, 2012 11:38
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.