• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Afirmativa

Afirmativa

Mensagempor Jhennyfer » Ter Jun 18, 2013 17:27

A afirmativa no gabarito está correta... mas alguém pode me explicar porque?!

- Toda dízima periódica provém da divisão de dois números inteiros, portanto é um número racional.

Boom, os números 0,1 e 0,9 não são números racionais??
se 0,1/0,9 resulta em uma dízima periódica 0,111...
então porque a afirmativa coloca somente números inteiros?
Obg desde já ;)
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Afirmativa

Mensagempor temujin » Ter Jun 18, 2013 18:11

Todo número racional é pode ser representado por uma razão entre dois inteiros. Neste caso que vc citou:

0,1 = \frac{1}{1} ; 0,9 = \frac{9}{10}

Logo, toda dízima é resultado da divisão de inteiros.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Afirmativa

Mensagempor Jhennyfer » Qua Jun 19, 2013 13:20

Bom... isso eu entendi!
Mas sinceramente, não fiquei conformada ainda... pois independente da origem, os números 0,1 e 0,9 propriamente ditos são racionais... e dividindo-os obteremos uma dízima!

Enfim... obrigado pela a explicação,
eu compreendi perfeitamente a linha de raciocínio.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Teoria dos Números

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}