por Victor Gabriel » Ter Jun 18, 2013 13:48
Pessoal olha se estou certo:
questão: Mostre que se

então
![\sqrt[]{xy}\leq\frac{x+y}{2} \sqrt[]{xy}\leq\frac{x+y}{2}](/latexrender/pictures/4f00056aa4c28b46757f56403cb81cd6.png)
.
PROVA: fazendo:
![{\left(\sqrt[]{x}-\sqrt[]{y} \right)}^{2}\geq0 {\left(\sqrt[]{x}-\sqrt[]{y} \right)}^{2}\geq0](/latexrender/pictures/02ee9bc9a67bb2d3538f74218d5cc549.png)
![x-2\sqrt[]{xy}+y\geq0\Rightarrow x+y\leq2\sqrt[]{xy}\Rightarrow\sqrt[]{xy}\leq\frac{x+y}{2} x-2\sqrt[]{xy}+y\geq0\Rightarrow x+y\leq2\sqrt[]{xy}\Rightarrow\sqrt[]{xy}\leq\frac{x+y}{2}](/latexrender/pictures/5be3a58bbddd623f8b6bef3848c7cb5b.png)
estou certo ou não?
-
Victor Gabriel
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Dom Abr 14, 2013 20:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: estudante
- Andamento: cursando
Voltar para Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.