• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Teorema fundamental Calculo

[Integral] Teorema fundamental Calculo

Mensagempor temujin » Seg Jun 17, 2013 17:36

Olá pessoal.

Tô enroscado nesta questão.

Acho que tem que usar o Teorema fundamental do calculo, mas até agora não saiu, :evil:

Seja f:[0;1] \rightarrow \mathbb{R} uma função contínua tal que \int_0^x f(t)dt = \int_x^1t^2f(t)dt+\frac{x^6}{6}+\frac{x^8}{8}-\frac{c}{24}. Calcular o valor de c.


Alguma idéia?? :idea:
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Integral] Teorema fundamental Calculo

Mensagempor temujin » Seg Jun 17, 2013 19:12

Já consegui :D

Vou deixar a resposta aqui, de repente alguém se interessa pelo assunto:

Usando o TFC nos dois lados:

\frac{d}{dx} \left [\int_0^x f(t)dt \right ] = \frac{d}{dx} \left [\int_x^1 t^2f(t)dt +\frac{x^6}{6}+\frac{x^8}{8}-\frac{c}{24}\right ]

f(x).f'(x) -f(0).0= f(1).0 -x^2f(x)f'(x)+x^5+x^7 \Rightarrow f(x) = - x^2f(x)+x^5+x^7

f(x) = \frac{x^5+x^7}{1+x^2} = \frac{x^5(1+x^2)}{1+x^2} = x^5


Substituindo de volta na integral:

\\ \int_0^x t^5 dt = \int_x^1 t^2.t^5 dt + \frac{x^6}{6}+\frac{x^8}{8}-\frac{c}{24} \Rightarrow \frac{x^6}{6} = \frac{1}{8} - \frac{x^8}{8}+\frac{x^6}{6}+\frac{x^8}{8} - \frac{c}{24}

c=\frac{24}{8} = 3
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.