• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me Ajuda ae! Exercício Chato

Me Ajuda ae! Exercício Chato

Mensagempor mtuliopaula » Qui Nov 12, 2009 17:25

Um time A tem 2/3 de probabilidade de vitória sempre que joga. Se A joga 4 partidas, encontre a probabilidade de A vencer:
a) exatamente duas partidas b) pelo menos uma partida c) mais que a metade


Não sei qual fórmula usar e como fazer, podem me ajudar ? to quebrando a cabeça aqui.
mtuliopaula
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Out 22, 2009 10:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Me Ajuda ae! Exercício Chato

Mensagempor Elcioschin » Qui Nov 12, 2009 17:57

Um conselho

Enquanto vc considerar "chato" o exercício, vc NUNCA aprenderá!

_____ _____ _____ _____
(2/3)..(2/3)..(1/3)..(1/3) -----> p' = 4/81

C(4,2) = 6

P = 6*(4/81) ----> P = 8/27

Faça vc agora os ítens b, c
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}