• Anúncio Global
    Respostas
    Exibições
    Última mensagem

combinação e divisibilidade por 7

combinação e divisibilidade por 7

Mensagempor matmatco » Qua Jun 12, 2013 21:50

boa noite, minha duvida é como o livro conclui que essa combinação não é divisivel por 7 só olhando os expoentes de 7
o exercicio pede para mostra que a combinação não é divisivel por 7

\prod_{1000}^{500}(considere esse simbolo como o de combinação) o livro resolve assim:

encontro os multiplos de 7 em 1000, assim temos que de 7 ate 994 tenho 142 multiplos/divisores de 7 e analisando melhor encontro de 49 ate 980 tenho 20 multiplos/divisiveis por {7}^{2} e sabendo que existe 2 multiplos/divisiveis por {7}^{3} assim tenho 142+20+2=164, faço isso com o 500 e de 7 ate 497 tenho 71 multiplos/divisores de 7 e analisando de 49 ate 490 encontro 10 multiplos/divisiveis por {7}^{2} e sabendo que existe 1 multiplo/divisivel por {7}^{3} assim tenho 71+2+10=82 só que ele multiplica esse 82 por 2 obtenho 164 eu estou pensando que seja devido o 500 estar elevado ao quadrado na formula aqui abaixo

\prod_{1000}^{500}=\frac{1000!}{{500}^{2}!}(lembrando em considerar esse simbolo como o da combinação), chegando aqui ele conclui que essa combinação não é divisivel por 7.
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.