por marcelojs » Ter Jun 11, 2013 23:43
Um cubo 10x10x10 é formado por pequenos cubos unitários. Um gafanhoto está no centro O de um dos cubos de canto. Em qualquer instante, ele pode pular para o centro de qualquer cubo que tenha uma face em comum com o cubo onde ele está, desde que este pulo aumente a distancia entre o ponto O e a posição atual do gafanhoto. De quantas maneiras o gafanhoto pode chegar ao cubo unitário de canto oposto?
- Anexos
-

- Rascunho de questão... Não sei se está correta!
-
marcelojs
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Jun 11, 2013 12:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [circunferências] Dúvida questão Urgente!
por garrincha » Sex Abr 11, 2008 23:53
- 6 Respostas
- 6154 Exibições
- Última mensagem por Mi_chelle

Seg Mar 28, 2011 17:55
Geometria Plana
-
- Continuidade - Dúvida questão, é urgente!!
por arthurvct » Seg Mai 06, 2013 18:37
- 1 Respostas
- 1049 Exibições
- Última mensagem por e8group

Seg Mai 06, 2013 22:11
Cálculo: Limites, Derivadas e Integrais
-
- Questão Banco do Brasil 2011 - Dúvida Urgente
por Tay » Qui Mar 28, 2013 13:31
- 3 Respostas
- 2481 Exibições
- Última mensagem por Tay

Sáb Mar 30, 2013 17:26
Matemática Financeira
-
- questão dificil.
por natanskt » Seg Dez 13, 2010 18:20
- 1 Respostas
- 2347 Exibições
- Última mensagem por Molina

Sáb Dez 25, 2010 20:28
Binômio de Newton
-
- Questão dificil
por cortelettirlz » Qua Set 07, 2011 15:32
- 1 Respostas
- 1523 Exibições
- Última mensagem por MarceloFantini

Dom Set 11, 2011 19:43
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.