P=(1,1) e tem um foco F=(
, 0).Utilizei a fórmula da distância d(P,F1) + d(P,F2) = 2a, para descobrir o valor de "a", mas não consigo terminar devido as frações.
, 0).
juniocs escreveu:Determinar a equação geral da elipse com centro na origem, que passa pelo ponto
P=(1,1) e tem um foco F=(, 0).
Utilizei a fórmula da distância d(P,F1) + d(P,F2) = 2a, para descobrir o valor de "a", mas não consigo terminar devido as frações.
e
.


![\sqrt{\left[\dfrac{(-1)\left(\sqrt{6} + 2\right)}{2}\right]^2 + 1} + \sqrt{\left(\dfrac{\sqrt{6}-2}{2}\right)^2 + 1} = 2a \sqrt{\left[\dfrac{(-1)\left(\sqrt{6} + 2\right)}{2}\right]^2 + 1} + \sqrt{\left(\dfrac{\sqrt{6}-2}{2}\right)^2 + 1} = 2a](/latexrender/pictures/0634abb6ca66fa12a87611a17c84950f.png)






, note que você precisa calcular
. Neste caso, temos que:








).

Voltar para Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.