• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Pura]

[Álgebra Pura]

Mensagempor raimundoocjr » Qui Mai 30, 2013 22:59

Calcular \frac{-3x}{(3+3x^2)^2}=\frac{9}{16}.
raimundoocjr
 

Re: [Álgebra Pura]

Mensagempor e8group » Sex Mai 31, 2013 11:27

Esta equação não admite solução real .De fato : Reescrevemos -3x/(3+3x^2)^2 como -x/[3(x^2+1)^2] e considerando este resultado uma função g(x) .Observando que o denominador é sempre positivo para quaisquer x real ,então comparando a igualdade dada (equação) é fácil ver que se g(x) =9/16 admite um número finito de soluções reais ,então obrigatoriamente tais soluções são < 0 ,mas isto contradiz o teorema do valor intermediário (TVI) , pois g é contínua em (-\infty,0) e \begin{cases} \lim_{x\to -\infty} g(x) <9/16\\  \lim_{x\to 0^-} g(x) < 9/16\end{cases} o que implica que não existe c em quaisquer intervalos [M,N] \subset (-\infty,0)(ou [N,M] \subset (-\infty,0) ) tais que g(c) = 0 .Logo pelo (TVI), concluímos que a suposição de g(x) =9/16 admite um número finito de soluções reais é falsa ,i.e,a equação não admite solução real .

Outra forma que achei interessante :

Usando que necessariamente x< 0 ,fazendo a substituição trigonométrica x = - tan(\gamma) para (*) tan(\gamma) > 0 ,temos :

\frac{ tan(\gamma)}{3(1+tan^2(\gamma))^2}  = \frac{tan(\gamma)}{3sec^4 \gamma} = \frac{9}{16}  \implies   sin \gamma cos^3 \gamma = \frac{27}{16} .Esta igualdade é uma contradição .Pois 27/16 > 1 e as funções seno e cosseno são limitadas , pela hipótese(*) tem-se sin(\gamma)cos^3(\gamma) <1 .Absurdo ! .

A primeira solução acho que ela é aceita ,a segunda talvez ela seja .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Álgebra Pura]

Mensagempor raimundoocjr » Sex Mai 31, 2013 15:34

Entendi. Valeu!
raimundoocjr
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: