• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferenciação Logarítmica

Diferenciação Logarítmica

Mensagempor Man Utd » Dom Mai 26, 2013 16:02

Calcule a derivada da seguinte função f(x)=x^{x^{x}}.

comecei assim:
\\\\ f(x)=e^{ln x^{x^{x}}} \\\\ f(x)=e^{x^{x}*ln x} \\\\ \frac{dy}{dx}=\frac{d(e^{x^{x}*ln x})}{dx} \\\\ \frac{dy}{dx}=\frac{d(e^{x^{x}*ln x})}{du}*\frac{d(x^{x}*ln x)}{dx} \\\\ \frac{dy}{dx}=e^{x^{x}*ln x}*((x^{x}(lnx+1)).lnx+x^{x}*\frac{1}{x}) \\\\ \frac{dy}{dx}=x^{{x}^{x}}*(x^{x}(lnx+1).lnx+x^{x-1})

é isso? se não alguém pode me dar dicas? :-D
obrigado desde já.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor e8group » Dom Mai 26, 2013 16:26

Considere : h(x) = x^x , exp(x) = e^x .Temos : f(x) = (h\circ h)(x) .Assim , pela regra da cadeia , f'(x) = ([h'\circ h] \cdot h')(x) = \frac{d h(h(x))}{d(h(x))} \cdot \frac{dh(x)}{dx} . Como h(x) = x^x = e^{ln(x^x)} = epx(x\cdot ln(x)) .Novamente pela regra da cadeia ,temos : h'(x) = exp'(x\cdot ln(x)) \cdot (x\cdot ln(x))' que devido a regra do produto , h'(x) =  exp(x\cdot ln(x)) \cdot (x' \cdot ln(x) + x\cdot ln'(x)) = exp(ln(x^x)) \cdot (ln(x) + 1) = x^x \cdot (ln(x) +1) .

(Claro que está implícito x> 0 ) .

Lembrando que : f'(x) = ([h'\circ h] \cdot h')(x) = h'(h(x)) \cdot h'(x) .Basta substituir o resultado acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor Man Utd » Dom Mai 26, 2013 17:50

olá santhiago,eu não posso deixar do jeito que está?(Verifiquei a resposta no wolfram: http://www.wolframalpha.com/input/?i=de ... x%5Ex%29+# )
obrigado pela paciência.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor e8group » Dom Mai 26, 2013 19:00

Pode sim ,uma vez que elas são equivalentes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)